Assert Use in GitHub Projects

Casey Casalnuovo, Prem Devanbu, Abilio Oliveira, Vladimir Filkov, Baishakhi Ray
Computer Science Dept., Univ. of California, Davis
{ccasal,ptdevanbu,vfilkov,abioliveira,bairay } @ucdavis.edu

Abstract—Asserts have long been a strongly recommended (if
non-functional) adjunct to programs. They certainly don’t add
any user-evident feature value; and it can take quite some skill &
effort to devise and add useful asserts. However, they are believed
to add considerable value to the developer. Certainly, they can
help with automated verification; but even in the absence of that,
claimed advantages include improved understandability, main-
tainability, easier fault localization and diagnosis, all eventually
leading to better software quality. We focus on this latter claim,
and use a large dataset of asserts in C and C++ programs to
explore the connection between asserts and defect occurrence.
Our data suggests a connection: methods with asserts do have
significantly fewer defects. This indicates that asserts do play an
important role in software quality; we therefore explored further
the factors that play a role in assertion placement: specifically,
process factors (such as developer experience and ownership) and
product factors, particularly interprocedural factors, exploring
how the placement of assertions in methods are influenced by
local & global network properties of the callgraph. Finally,
we also conduct a differential analysis of assertion use across
different application domains.

I. INTRODUCTION

The idea of assertions, which can be automatically checked
at runtime, dates back some 40 years [48]. Most popular
programming languages, including C, C++, Java, Python
all provide support for assertions and run-time checking; some
languages even consider assertions and assertion-based pro-
gramming as central to their design (e.g.,, Eiffel, Turing).
Assertions are widely taught in undergraduate curricula, and
it is reasonable to assume that the majority of practicing
programmers are well aware of their use and advantages.

Run-time checking is certainly not the only use of assertions;
the use of assertions in program verification also has a
distinguished history, dating back to Floyd in the 1960s [18].
While the technology of automated verification has made
tremendous strides, Hoare [21] laments that assertions in
practice are not often used in the context of automated
verification.

However, the formerly stated purpose of assertions, viz., for
run-time checking, is, in fact, often exploited by programmers
in the trenches. Steve McConnell, the author of many popular
programming “cook-books” for software practitioners, heartily
advocates [30] the use of assertions to give programs a “death
wish”. This is in order to promote the timely and highly visible
failure of a program, should it reach a state in which there are
some inconsistent or invalid data values clearly in evidence.
Such an immediate and self-evident failure would be far easier
to diagnose than a delayed failure obscured by more wide-
spread data corruption.

In addition to supporting debugging and fault localization,
asserts are also thought to promote readability. For example,

the intended purpose and function of a loop arguably becomes
far more evident in the presence of an assertion indicating the
termination condition, or an invariant assertion. Thus, besides
aiding fault localization during intensive coding sessions,
assertions may also help programmers better understand code,
and avoid constructing faulty code in the first place.

So, it is quite reasonable to advocate for the use of assertions
on the basis of the above two arguments: assertions will make
for more informed programmers who make fewer mistakes, and
help isolate errors quickly even if mistakes were made. All the
above discussion, admittedly, is largely of a theoretical nature.
Do these theories hold up in practice? The central concern
of this paper is a study of the practical use of assertions.
We collect a large corpus of the 100 most popular C and
C++ software projects on GitHub, and using this corpus, we
conduct a series of empirical analyses and make the following
contributions:

1) Assertions are widely used in popular C and C++ projects.
69 of the 100 projects contain more than a minimal
presence of assertions, and this subset of projects contain
in total 35M lines of code. In these projects, we find that
4.6% of methods contain assertions.

2) We find that adding asserts has a small (but significant)
effect on reducing the density of bugs, and that as the
number of developers in a method increases, adding more
asserts can reduce the occurrence of new bugs.

3) Asserts tend to be added to methods by developers with a
higher ownership of that method. Additionally, developers
with more experience in a method are more likely to add
asserts.

4) In the structure of the call graph network, methods with
asserts are more likely to take on the role of hubs, a
network role that gathers & dispenses information from/to
other nodes.

5) We compared the number of asserts in projects with
different application domains, but found that domain did
not significantly affect the number of asserts used.

II. RESEARCH GOALS

We sought to understand how assertions are used in practice,
in particular the process outcomes that are associated with the
use (or disuse) of assertions.

We begin with the oft-stated goal of assertions, here
articulated eloquently in the Python Wikﬂ

Assertions are a systematic way to check that the internal
state of a program is as the programmer expected, with
the goal of catching bugs. In particular, they’re good for

Uhttps://wiki.python.org/moin/Using AssertionsEffectively

https://wiki.python.org/moin/UsingAssertionsEffectively

catching false assumptions that were made while writing
the code, or abuse of an interface by another programmer.
In addition, they can act as in-line documentation to some
extent, by making the programmer’s assumptions obvious.

The strong implication that assertions are a way to improve
quality outcomes is unmistakable. This leads directly to our
first research concern:

RQ1. How does assertion use relate to defect occurrence?

In examining the last sentence of the quote above, we
can see that it clearly speaks to the documentary, or com-
municative value proposition of asserts, whereby they are used
to communicate important assumptions to other developers
that may be examining the same code, perhaps with a
view to making modifications. Because of this, we might
reasonably expect that assertions are associated with process
aspects of asserts, specially the process aspects that relate
to collaboration. Collaborative and human process aspects
have long been a concern in empirical software engineering.
Previouﬁ research [39]], [[16], [4] has explored the effect of
factors like ownership, experience, and number of developers
on software quality. Given the communicative value of asserts,
it would be interesting to investigate whether collaborative
aspects of software relate to assertion use. Fortunately, modern
version control systems afford the reliable and straightforward
measurement of process properties such as ownership and
experience.

RQ2. How does assertion use relate to the collaborative
aspects of software engineering, such as ownership, expe-
rience, and number of committers?

While process factors (the how of software) are important for
assertion placement, one can certainly expect that the product
also matters; programmers’ decisions on where to place asserts
will almost certainly be influenced by what software they are
building, and which element of it they are working on. There are
certainly a great many properties[[L7] of software and software
elements, relating to size, complexity, coupling, cohesion, etc.,
but a comprehensive examination of all is beyond the scope
of our work. In this paper, we focus on one specific aspect
of assertion placement: inter-procedural aspects that relate to
assertion placement. In particular, we focus on call-graphs.

Call graphs are a useful abstraction that capture the modular
dependencies in programs. In our study, all the projects are
C and C++ based. Since C++ is an object oriented language,
it is not always feasible to statically determine accurate call
graph of C++ programs due to OO properties like inheritance
and polymorphism. So we focus on C call-graphs; nodes are
C functions, and a directed edge from function f; to fo exists
if f; explicitly calls f,. Static tools can build call-graphs by
analyzing source code; but these are clearly approximations,
when calls through function pointers are present. Nevertheless
call-graphs are widely used for various empirical studies [50],
[45]], [20]. They have also been extensively used in architecture
recovery [19], [12], [33], [36], [29].

>There are numerous other papers, we just cite a few representatives.

We begin here with the hypothesis that the placement
of assertions within methods relates to the role the method
plays in the overall system, and that this role is captured
in the architecture of the call-graph. While this is indeed a
strong assumption, the prior use of call-graphs for architecture
recovery provides some justification. The more important, or
central, a method, we expect the more likely it is that developers
will be inclined to place asserts therein. The field of network
science [5]] has produced a variety of algebraic approaches
to obtain numerical measures of centrality of roles played by
nodes in a network. These measures include local measures,
such as in-degree and out-degree and global measures, such as
betweenness centrality, Kleinberg’s hub and authority measures,
etcE] By determining the association between nodes’ importance
in a call graph with outcomes of interest, one can gain intuitions
about which aspects of the network position of a node are
most strongly associated with the given outcome. For example,
nodes with high centrality in biological networks are related to
organism survival [24]. Similarly, in sociology high centrality
corresponds to higher social capital [47]. These types of
measures have also been applied before to software dependency
graphs [50]; thus it reasonable to effect that such measures
may well prove strongly associated with assertion placement.

RQ3. What aspects of network position of a method in a
call-graph are associated with assertion placement?

Finally, as mentioned earlier, the application domain of a
software system may be expected to be related to assertion use.
We have recently categorized GitHub projects into six general
and disjoint domains, including Databases, Libraries, etc. [40]
As code in these different categories may be substantially dif-
ferent [40], it is reasonable to expect that the code development
process, including debugging, may be different across these
domains. While there we did not find a relationship between
code quality and application domain in our prior work, [40],
assert use might be related to the domain. Thus, we ask,

RQ4. Does the domain of application of a project relate
to assertion use?

III. RELATED WORK

Assertions have a long history [[10] and have been a durable
subject of great interest, specially in the area of tools and
methods to a) generate assertions (e.g., Daikon [14]) b)
assertion checking [41]], [49] and c) Veriﬁcatimﬂ [9]. Assertions
have also influenced language design notably Eiffel [31]]
which introduced the notion of “design by contract”. Our goal
in this work is an empirical analysis of assertion use in a large
program corpus; so we confine our related work discussion to
work on empirical analysis of assertion use. These empirical
studies fall into two broad categories: descriptive studies of the
kinds of assertions in practical use, and the studies of quality
impact of assertion use.

3We have used Kleinberg’s hubs and authorities successfully earlier for
finding methods relevant to a given method [42] as they are well suited to
software call graphs; they provide helpful ways to identifying nodes that play
an important role in the global flow of dependencies within a directed graph

4The literature is extensive; only a few representative works are cited

A. Studies of Assertion Usage

There have been several studies on the general usage of
assertions and contracts in open source and proprietary systems.
Chalin performed two studies to understand assert usage. First
was a survey of 200 developers concerning assertion usage, and
how errors within invariants themselves should be reported. He
found that 80% of the developers used asserts in their coding
at least occasionally [8]. This was then expanded upon in a
study in 85 Eiffel projects, with projects from open source,
Eiffel libraries, and proprietary software. He found about half
the asserts were preconditions, followed by postconditions at
40%, and about 7.1% were invariants. Just over a third were
null checks. As a percentage of lines of code, assertions made
up 6.7% of the libraries, 5.8% of the open source projects, and
4.2% of the proprietary software.

Jones et al. studied 21 Java, Eiffel, and C# projects that
consciously made extensive use of asserts[[15]. They found
that the number of asserts scaled with project size, and that
assertions changed much less frequently than the other code.
They also reported only minor differences between the use
of preconditions, postconditions, and object invariants, though
preconditions tended to be more complex than postconditions.
Our work is complementary; we studied usage of assertions
in popular open-source C, C++ projects, with no specific
commitment to assertion usage, as opposed to carefully
choosing projects with high code assertions usage. Our interest
is to study how regular developers use assertions in a daily
basis. Also, as opposed to Jones et al. we noticed volatile nature
of assertions with significant number of deleted or modified
assertion (64.59% of total added assertions are deleted or
modified).

Researchers have also compared automatically generated
assertions with those that developers write. Polikarpova et al.
did a small study comparing Daikon generated assertions with
developer written assertions in 25 classes. They found that
while Daikon generated more valid assertions than those written
by developers, it could not recreate all the assertions written
by developers. Additionally, about a third of the generated
assertions where not correct or not relevant [37]]. Schiller et al.
studied Microsoft Code Contracts [43] in 90 C# projects in
order to understand how to help developers use them more
effectively and also used Daikon to automatically generate
assertions for these projects. They found most developer
written assertions were NULL-check preconditions, and that
Daikon generated many more potential postconditions than the
developers wrote.

B. Quality impact of Assertion use

Do asserts and contracts help developers identify the source
of a fault, once an assertion identifies an invalid system state?
Early work explored using syntactic mutations to identify less
testable code regions where internal invalid states might not
be observable in the output and then adding asserts in such
regions [46]]. Several later studies [2]], [6]], [44] all used syntactic
mutations to introduce new errors and examined how well
asserts could detect and isolate the faults. Shrestha ez al. found
significant improvement in assertions detecting the mutated

errors over the basic runtime error detection in Java using
JMLI[27], a Java assertion library. The runtime error detection
found only 11% of the faults, but the assertions found another
53% of the faults missed by the basic runtime checker [44]].
Briand et al. compared the ability to identify the source of a
mutated fault with and without assertions using the of number
of methods between where the error was detected and the
line responsible as a metric of diagnosability. They found
adding assertions improved the diagnosability significantly [6].
Baudry et al. found significant increases with diagnosability
when adding assertions as well, but also found a upper bound
on improving diagnosability by just adding more asserts, that
that the quality of asserts was more important [2]. Our study
differs in that looks at bugs at a higher granularity and is not
concerned with diagnosability. We also focus on actual bugs
and not bugs induced by mutation, and our sample size is
much larger than any of these studies.

Additionally, there a study comparing asserts and N-version
programming abilities to detect errors [28]]. They compared
the additions of assertions by 24 graduate students with 2
and 3 version voting to determine the effectiveness of each in
error detection. They found both method identified similar, if
different numbers of faults, but that the assertions were better
able to pinpointing the errors and providing useful information.

Muller et al. used APP [41] and jContract [23]], extensions
that add assertions to C and Java in two experiments with
computer science graduate students to see how assertions
affected the quality of output and the effort of the programmers.
They looked at instances where programmers were extending
existing code and writing new code. They found some evidence
that the assertions decreased programmer effort in extending
existing code but the reverse was true in new code. They also
found that the assertions increased method reuse and that they
slightly improved reliability [34] However, the small size of
the experiment limited the significance of their results and its
generalizability.

Most closely related to our work was a small a case study
by Kudrjavets et al. on two Microsoft projects comparing the
density of asserts with the density of bugs in the files. They
found a small negative correlation between assert density and
fault density, where as the density of asserts increases the fault
density decreases [26] . We extended this study and confirmed
their findings.

IV. METHODOLOGY

A. Study Subjects

To understand usage patterns and code quality effects of
asserts in a representative set of projects, we decided to use
the 100 most popular GitHub projects, written primarily in
C, C++, or both. Among these, we excluded projects where
fewer than 10 asserts were ever added. This left 69 projects
with 15,003 distinct authors, with 147,119 distinct files and
689,995 methods with project histories that dated back as far
as 1991. Table [I| shows a summary of the projects we used
in this paper, including ‘Linux’, ‘gec’, ‘mongodb’ , ‘opencv’,
‘php-src’, ‘git’, ‘numpy’ etc. While assertions have appeared
in about 4.6% of methods overall, the assertions appear far

more frequently in C++ methods, with about a rate of 10.7%
in comparison to a rate of only 2% in the C methods.

c c++ Overall

#Projects 63 53 69

#Authors 13,106 3345 15,003

Project Details KLOC 21.909 13,353 35262
#Files 82,462 64.657 147119

#Methods 472,596 217,399 689,995

#Assert Methods 9.376 237288 32,664

Period 5/91-7/14 9/96 - /14 5091 - /14

. Total 4,855,798 64,657 7035248

#AIl Commits Assertion 13.751 22374 35.901
-~ Toul 100,036 21,664 119,831

#Bugfix Commits (. ion 1,938 2,566 4,461

TABLE I: Study Subjects. Total represents number of commits
with atleast one added lines. Assertion represents total number
of commits with atleast one assertion in the added lines.

B. Data Collection

Retrieving project evolution history: For all projects above,
we retrieved the full history all non-merge commits along
with their commit logs, author information, commit dates, and
associated patches. Most of the data collection was done in
May, 2014. We used the command git log -Ul -w, where
the option -U1 downloads commit patches and —w outputs
method names for which the code has been added. We then
removed commits not affecting C and C++ source and header
files. Next, we marked files either fest or source file, depending
on the presence of the keyword ‘test” within the file names.
We disregard all the ‘test’ files from our analysis, because use
of assertion in test context is very different from the present
scope of the paper. We further identified bug fix commits made
to individual projects by searching their commit logs for these
error related keywords: ‘error’, ‘bug’, ‘fix’ , ‘issue’, ‘mistake’,
‘incorrect’, ‘fault’, ‘defect’ and ‘flaw’, using a heuristic similar
to that developed by Mockus and Votta [32].

We implemented an assert classifier that collects assert
specific statistics from commit patches by searching for the
keyword “assert”. We ignored the case of this word and
included it also when it was a substring of a larger method name
in order to not only capture the standard C assert function, but
also various developer created macros and assert functions
specific to individual projects. For example project gcc
frequently use functions like gcc_assert or DBUG_ASSERT
as opposed to standard assert statements. Additionally, we first
removed source code comments from the patches. E] Finally,
we collected the number of assertion added and deleted per
commit, per project, by parsing the added and deleted lines,
respectively, from each commit patch.

To evaluate the precision of the assert classifier, we selected
100 random segments of commit patches that were marked as
containing asserts. No more than three commits were taken
from each project to minimize project specific bias. We then
manually checked the actual number of asserts added and

SWe disregarded the context of changes that represent unchanged source
code, since we were only interested in evolutionary aspect of assertion.

removed in each segment. If an exact match was found, that
instance was marked as correctly labeled, otherwise it was
marked incorrectly labeled. The initial precision was around
90% which we improved by eliminating asserts in comments
and headers. After the improvements, our final classifier had
a precision of 95-98% across all projects. Of the mislabeled
ones, manual examination showed that two cases out of the
hundred were not asserts, and three cases were ambiguous. E]

Collecting Process Statistics: To see the number of asserts
added and deleted to a method over its lifetime, we sum the
asserts added in each method on a per commit basis using
the text parser described above. We similarly find the total
lines and removed per method, as well as calculate the total
number of commits and committers to each method. We collect
these statistics both for the methods themselves and for the
individual developers who contributed to each method.

Retrieving the Call Graph: To investigate where asserts are
used w.rt. a project’s overall structure, we gathered method-
level call graphs for 18 different C projects from their repository
versions, at data gathering time. We did not attempt call-graph
derivation for C++ programs, due to complications arising from
virtual-function dispatch.

First, using LLVM’s clang tool El, the front-end for the
LLVM compiler, we parsed C source files to collect the
names of all methods present in each. We adapted the
PrintFunctionNames Pass that comes with the LLVM
distribution to implement this step.

Second, for each of the 18 projects, we built a Cscope{ﬂ
database for all C files, containing project specific symbols
and their dependencies, including method level caller-callee
relationships. Such databases can be used to browse source
code of very large projects like Linux, gcc etc.

Third, we combined the results from the two steps above:
for each method found by clang, we queried the corresponding
Cscope database to retrieve caller-callee information associated
with it. In particular, for a queried method, option —2 was used
to find methods called by it, and option -3 was used to find
methods calling it. We merged the caller and callees for each
method to build a method level call graph.

We further estimated the size in terms of SLOC of each
method. This was necessary because size can be a confound
in our network analysis step. For example, large methods may
make many calls to other methods , and thus can have higher
out-degree. Therefore, network measures such as node degree,
betweenness, and hubs/authorities may correlate with method
size. To address the effect of this potential confound, first we
removed the commented code from method body. Then we
measured size of the methods using ctags E] which retrieves
the line number of different elements in C files. We extracted
the line numbers of methods, structures, define statements,
and typedefs for each file, sorted them based on line number,

50ne of the two false positives was a comment that slipped through the
filtering, and the other was a #define statement that specified assertion behavior,
but was not itself an assert. The three ambiguous cases were functions related
to asserts, or potential asserts, implemented in non standard ways.

"http://clang.llvm.org/

8 |http://cscope.sourceforge.net/

“http://ctags.sourceforge.net/

http://cscope.sourceforge.net/

and estimated the size in LOC of each method by subtracting
its starting line number from the line number of the next
marked element. Obviously, this is only a rough estimate, so
we randomly selected 5 or 6 methods from each of the 18
projects to obtain 100 total samples and manually checked if

the approximated LOC was within a margin of error of 5 lines.

In 91 cases this was true, and in none of the observed error

cases was the estimate extremely different from the actual size.

Therefore, this estimate is an appropriate measure for roughly
distinguishing between different sized methods.

C. Statistical Methods

We use statistical tests and statistical regression modeling
to reject hypotheses and answer our research questions, in the
R statistical environment [38]. To test for a difference in the
means between two populations we use the non parametric
Wilcoxon-Mann-Whitney test, for unpaired samples, and the
Mann-Whitney paired test for paired samples. We interpret the
results using p-values, indicating the likelihood of a hypothesis
being true by chance, and supplement those with the Cohen’s d
effect size values [1L1l]. Boxplots are used to visualize different
populations.

Regression models are in general used to describe the effects
of a set of predictors on a response, or outcome variable. In this
paper, we use multiple linear regression and generalized linear
regression [11]] to model the effect of the number of asserts per
method commit on outcomes, e.g., defects, related to software
projects. Our data presents special challenges: most of our
predictors are counts (of asserts, developers, and defects) and
an overwhelming number of commits to methods has neither
asserts, nor defects, i.e. the number of zero values overwhelms
the non-zero values. Fitting a single multiple regression model
on the entire data carries the implicit assumption that both the
zero-defect/zero-assert and non-zero defect/assert data come
from the same distribution, which may not be valid. Where
necessary, e.g., when modeling defects as outcomes, we deal
with this issue by using hurdle regression models [7], in which
there are two separate models. The first models overcoming a
hurdle: the effect of passing from a (defect) count O to a count
1; the second models the effect of going from one non-zero
count to another non-zero count. Typically, the two models use

nonlinear multiple regression with different linking functions.

The hurdle model is usually, as in our case, a logistic regression;
the count is a Poisson or negative binomial regressioﬂ [71.

Following the regression modeling, we use analysis of
variance (ANOVA) to establish the magnitude of the significant
effects in the models. We get that by observing the reduction in
the residual deviance associated with the variable’s effect. We
log-transform dependent non-count variables as it stabilizes the
variance and usually improves the model fit [L1]. To check for
multi-collinearity we use the variance inflation factor (VIF) of
each dependent variable in all of the models, with a threshold
of 5 [11]. We filter and remove outliers in the data where
noted.

10Neg. binomial, compared to Poisson regression, produces narrower
confidence intervals on over-dispersed data with smaller number of observations

V. RESULTS

We organize our result reports by the research questions

discussed earlier in We begin with RQ[I] studying
the effect of assertion use on defects.

RQI| How does assertion use relate to defect occurrence?

As reported in numerous earlier studies, any study of defect
occurrence is always confounded by several factors, most
critically by the size of the module under investigation [13]].
Size has generally been found to be strongly associated with
defect occurrence, as one would reasonably have expected; we
can also reasonably expect that size will be strongly associated
with assert occurrence. Another oft found confounding factor in
defect modeling is the number of committers; previous research
reports a “too many cooks” [22] phenomenon leading to quality
issues arising from increased numbers of contributors. Thus,
here, we model total defects in methods as a function of total
asserts, with size and developer count as controls.

We use hurdle regression modeling which entails two
separate models, hurdle and count (see Methodology), and is
appropriate in our case, as adding the first assert is a "hurdle"
to overcome, different than adding the second, third, etc. For
the hurdle model, we use a logistic regression (generalized
multiple regression with a binomial variance function) to model
the binary outcome of having an assert (or not having one) in a
method; total lines of code added, and number of developers are
controls. Each row in this model represents a project method
(or other container like structure, union, and enum). We do
this on the full data set of 909,421 methods and containers
left after filtering extreme points. That corresponds to asking:
Is there an effect of adding an assert on there being, or not, a
defect in the method’s history? With the hurdle overcome, the
second, or count, model considers only those methods whose
histories include at least one defect repair, and which have at
least one assert added. In it, we regresses defect counts on
assert counts, controlling for lines added and the number of
contributors. It corresponds to the question: Looking only at
the 14,432 methods with non-zero asserts added and non-zero
defects reported, what, if any, is the effect of adding an assert
on the number of bugs? We use quasi-Poisson regression with
a log linking function to model the counts. In both models we
log-transformed the lines of code added variable, as it exhibited
a log-linear distribution, and is not strictly a count variable.

The modeling results are presented in The left
column contains the hurdle model coefficients, and the right
contains the count model coefficients. We note that the effect
of asserts on defects is negative in both models, in alignment
with popular belief that the effect of asserts is salutary, viz.,
towards diminishing defect occurrence. The effect size is small
but highly significant in the hurdle model, accounting, as per
the ANOVA analysis, for about 10% of the deviance of the
developers variable, and 1% of that of the total data. The
effects of the controls are much larger, as expected. The effect
of asserts on bugs in the count model is almost insignificant,
and the magnitude of the effect is negligible overall. Both
models together indicate that adding the first assert to a file
has a significant and sizable effect on bugs, but after the first,

on average for all developers, adding additional asserts has
no appreciable difference. The variance inflation factor was
well-controlled in both models.

We further examined the smaller data set of 14,432 methods
with non-zero asserts and non-zero defects, to study how the
presence of asserts in a method relates to defects when there
are more, or fewer developers to that method. To that end,
we split the data into two parts around the median number of
developers per method, and then applied the count model from
the right side of to each. The results are in
They show that, interestingly, adding asserts has a significant
mitigating effect on defects when more developers are involved.
In fact, even adding more lines of code seems not to be a risk
for having defects in this case, suggesting a salutary effect of
assert use on defects; perhaps asserts are a particularly useful
aid for communication when many, perhaps less experienced
“minor contributors” [4] are involved; we plan to pursue this
in future research.

On the other hand, asserts seem not to matter when fewer
developers commit to a method. The ANOVA analyses indicate
that the size of the effect of asserts on defects is small compared
to that of number of developers, but is magnified for the group
with higher number of developers per method. Again, the VIF
of the model variables are below 5.

Dependent variable:

total_bug (as binary)
logistic

(Hurdle Model)

total_bug

glm: quasipoisson
link = log
(Count Model)

log(T_a_LOC)

0.052*** (0.002)

0.066*** (0.005)

developers 0.931*** (0.004) 0.212*** (0.006)
total asserts —0.079*** (0.003) —0.014* (0.008)
Constant —0.972*** (0.004) 0.770*** (0.025)
Observations 909,421 14,432
Log Likelihood —495,929.8
Akaike Inf. Crit. 991,867.7
Note: *p<0.1; **p<0.05; ***p<0.01
ANOVA for Hurdle Model
Df Deviance Resid. Df Resid. Dev
NULL 909420 1119727.77
log(T_a_LOC) 1 30471.19 909419 1089256.59
dev 1 96512.46 909418 992744.12
total asserts 1 884.42 909417 991859.70
ANOVA for Count Model
Df Deviance Resid. Df Resid. Dev
NULL 14431 30725.07
log(T_a_LOC) 1 1431.49 14430 29293.58
dev 1 2780.05 14429 26513.53
total asserts 1 8.22 14428 26505.31

TABLE II: Bug analysis model. “T_a_LOC” stands for “Total added
Lines of Code”. The Count model is for the dataset: (total asserts >
0 & total_bug > 0)

1) Case Study: Building on the quantitative study above, we
present some case studies of asserts being added in bug fixing
commits in our dataset. We chose cases from two projects:
Linux and Mysql. We manually examined 46 and 50 commits
that had been marked as bug fix commits and have added

Dependent variable:
total_bug

(More
Developers)
log(T_a_LOC) —0.024** (0.009)
dev 0.211*** (0.009)
total asserts —0.047*** (0.012)

(Fewer
Developers)
0.119*** (0.007)

0.036 (0.035)
0.016 (0.010)

Constant 1.257*** (0.043) 0.408*** (0.037)
Observations 5,351 9,081
Note: *p<0.1; **p<0.05; ***p<0.01
ANOVA for More developer model
Df Deviance Resid. Df Resid. Dev
NULL 5350 13839.14
log(T_a_LOC) 1 31.73 5349 13807.41
dev 1 1341.43 5348 12465.98
total asserts 1 42.85 5347 12423.12
ANOVA for Fewer developer model
Df Deviance Resid. Df Resid. Dev
NULL 9080 14137.52
log(T_a_LOC) 1 790.68 9079 13346.84
dev 1 1.54 9078 13345.31
total asserts 1 4.93 9077 13340.37

TABLE III: Model explaining behavior of assertions and total bugs
in methods touched by higher & lower numbers of developers.

asserts from each project respectively. We chose these two
projects because both are popular & well established; both
extensively use assertions, and both are from relatively different
domains. By reading the bug fix commits, bug reports from
Mysql bug databasqg'’| (Our examined Linux commit messages
did not regularly document bug ids), and the associated patch,
we manually determined whether the assert was supporting the
bug fix. Out of 96 commits that we manually examined, we
could relate 48 of them where asserts were added to support
bug fixes. In rest of the cases, there was either a mislabeling of
commits or we could not relate assertions directly to the bug;
sometimes the commits were too large or addressed multiple
issues which made the assert’s relation to a bug fix unclear.
Table shows several examples of bugfix commits where
assertions are used in conjunction with bug fixes to help prevent
future errors. In Example 1, there were invalid memory reads
caused by reading past the end of a buffer. The error was fixed,
but the assert was also added to make sure that future reads do
not read from unallocated memory (see the commented lines
in the Table marked in blue). The second example is of an
assert checking the system state. This commit was working on
a group of related bugs where the SQL command "load data
infile" was causing problems—either hanging or leading to
missing data if the operation was performed after a delete. Part
of the fix included restarting the transaction during the end of
a bulk insert, and the assert is added into to make sure that
resetting is successfully completes. Here, the assert does not
check for the existence of the old error, but helps to protect
against new errors occurring. Finally, the third example uses
an improbable condition assert. The original bug was caused
because the code was not checking for all possible values of
flag count_cuted_fields in the code. This which was
fixed by enumerating all of them in a switch statement. The

http://bugs.mysql.com/

Example 1: Assert added to check for memory error

Author: Alexey Kopytov , Date: 2009-07-28 File: sgl/net_serv.cc
Log: Fix Bug #45031 - Allocate an extra safety byte to network buffer for when uint3korr() reads the last 3 bytes in the buffer.

-921,2 +923,9
{

my_real_read(NET xnet, ulong xcomplen)
J*
read unallocated or uninitialized memory.

*/

+ o+t o+ kot

DBUG_ASSERT (net->where_b + NET_HEADER_SIZE + sizeof (uint32)
net->max_packet + NET_HEADER_SIZE + COMP_HEADER_SIZE + 1);

The following uint3korr() may read 4 bytes, so make sure we don’t

The right-hand expression

must match the size of the buffer allocated in net_realloc().

<=

Example 2: Assert added to check system state (successful restart in this case).

Author: tomas @poseidon.ndb.mysql.com, Date: 2006-02-07, File: sql/ha_ndbcluster.cc

-3048,5 +3048,19
- if (execute_no_commit (this,trans) != 0) {
- no_uncommitted_rows_execute_failure();
- my_errno= error= ndb_err (trans);

+ if (m_transaction_on) {...}
+ else {

+ int res= trans->restart();
+ DBUG_ASSERT (res == 0);

+ }

int ha_ndbcluster::end_bulk_insert ()

Example 3: Assert added to prevent impossible condition.

Author: Tatiana A. Nurnberg, Date: 2006-02-07 File: sgl/field_conv.cc
Log Summary: Fix for Bug #48525 where CHECK_FIELD_IGNORE was treated as CHECK_FIELD_ERROR_FOR_NULL

-124,9 +124,14
- if

set_field_to_null (Field =*field)

switch (field->table->in_use->count_cuted_fields) {
case CHECK_FIELD_WARN:

case CHECK_FIELD_IGNORE:

case CHECK_FIELD_ERROR_FOR_NULL:

DBUG_ASSERT (0); // impossible

+ o+ o+ o+ o+

(field->table->in_use->count_cuted_fields == CHECK_FIELD_WARN)

TABLE IV: Examples of asserts added to assist with bug fixes from Mysql. The ellipsis indicates code changes omitted for space reasons.

K

The lines started with ‘+’ indicates added lines and started wit

indicate deleted lines in a commit patch. A majority of asserts in Mysql

use the macro DBUG_ASSERT, a part of its DBUG package. The asserted statements are marked in red.

Usage Mysql Linux
Memory/Pointer 2 2
Concurrency 3 5
Comparison to 0/ NULL 12 7
Impossible Condition 3 2
Bounds and Range Checks 4 2
System State 11 12
Planned Asserts 2 0

TABLE V: Different usage of asserts for fixing bugs.

assert added at the end to handle a default case where the flag is
some value outside the expected set. If this set were expanded
or changed in the future without this region of code being
updated, the assert would assist in catching the error. These
examples clearly show how asserts actually help to prevent
future bugs.

In order to gain a sense of what types of asserts were being
added, we further classified the asserts into seven categories,
as shown in table [V] This includes checks on memory and
pointer validity in the assert clause, checking concurrency
related artifacts like semaphore, mutex, locks etc., checking for
null/ O conditions, asserting an impossible condition the system
should never reach (Example 3 in Table [TV)), checks on array
bounds/variables range validity, ensuring valid system state by

checking the value of system flags (Example 2), and planned
asserts, where comments showed locations where developers
wanted to add more asserts in the future.

As each bug fix commit may contain several asserts, and
each assert may fall into multiple categories, the categories are
not disjoint. For instance, a zero comparison assert may also
be checking system state. Beyond the system state checks, we
found null/O checks to be most common, which agrees with
other similar studies of asserts and contracts in general [43].

RQP2| How does assertion use relate to the collaborative/hu-
man aspects of software engineering, such as ownership and
experience?

Asserts are conceptually difficult, requiring a fair bit of effort
and knowledge to craft, and add to the appropriate location. We
can expect that developers adding asserts have a high degree
of commitment to the specific code (types and values) as well
as an algorithmic/conceptual understanding of the underlying
logic. Thus we might expect that developers adding asserts
to a method m have a greater degree of ownership of it than
ones who just simply add code. We can also expect that those
adding asserts to m have acquired some degree of skill, or

Ownership of Developers

Ownership

0.0 02 04 06 08 1.0

T 1
Added Asserts Didn't Add Asserts

Fig. 1: Developer ownership in methods to which they added
asserts is greater. Outliers removed.

experience with method m. These are related, but not identical
aspects: in a very actively changed method, one might gain a
lot of experience, without gaining a high degree of ownership;
by the same token in a small method, one can gain high
ownership without much experience. We therefore investigate
the relationship of both to assertion addition separately.

We calculate ownership for each developer-method pair.
Thus, if there are a total of 100 commits to method m, and
developer d made 50 of them, then d’s ownership of m is 0.5.
This measure of ownership has previously been used at the level
of files [4]; we extend it to the method level. We calculated
ownership for all developers in a project, and all methods to
which they committed. Now we separate the developers for each
method m into two sub-populations; those that added asserts
to m, and those that did not. We compare the ownership of
each sub-population. The results are in We note, first,
that there is no size confound here; ownership is normalized.

Clearly assert-adding developers are associated with higher
ownership; the clear visual impression is confirmed by a
Wilcoxon-Mann-Whitney test (p-value < 2.2 x 10716). An
effect-size test (Cohen’s d) suggests that the effect is small.
This supports our hypothesis that users who have greater
commitment on a method will be more inclined to take the step
adding asserts to it. Users not as engaged with the method will
have less motivation to successfully implement an assert, and
open source developers appear to follow this trend. However,
one issue to note is that many methods have been changed
only by a single developer, and therefore these methods have
complete ownership (= 1.0). This will be more common when
considering method ownership, vs, e.g., file ownership, due to
the smaller granularity. Re-doing this analysis after removing
methods with ownership=1.0, yields the same outcomes.

Next we, examine the effect of experience. While ownership
is a proportion, or fraction, between 0 and 1, experience is a
cumulative measure, which generally increases monotonically
with time, as a developer engages in more and more activity.
We measure the experience of a developer with respect to
a method m as the number of commits she has made to m.

Experience of Developers

Median Experience (Log Scale)

T 1
Added Asserts Didn't Add Asserts

Fig. 2: Considering comiitters to each method, the experience
of those who added asserts is greater than those who did other
work. Outliers removed.

While this is, prima facie, a reasonable metric, it is potentially
fraught with a size confound.

Clearly a larger method M will have more commits (and so
potentially more people working on it will make commits, thus
gaining more experience with M); larger methods naturally will
also tend to have more asserts. Thus a naive examination might
find a spurious connection between experience and asserts,
arising from the size confound. To avoid this, we compare the
experience of developers on a method-by-method basis: we
compare the experience of developers who add assertions, and
those who don’t, for each method.

First, we find the set of developers D(m) who committed to
a given method m. We partition D into D, (m), the developers
who added asserts, and D,,(m) the developers who did not add
asserts. If either partition is empty for a given method m, it
is excluded from the rest of this study. Now, for each method
where both partitions are non-empty, we calculate developer
experience as the number of commits made by each developer.
For each method m, we then calculate the median experience
of D,(m) and of D, (m).

We then get a pair of median experiences for method m,
one for the developers who added asserts, and one for those
who didn’t. This pair can be compared without fear of a size
confound, because size is implicitly controlled. The results
are seen in The plots shows a notable difference.
A two-sample Mann-Whitney paired test confirms this effect
(with very low p-values). A Cohen’s d effect size test shows
the effect to be medium.

RQB| What aspects of network position of a method in a
call-graph are associated with assertion placement?

This part of our work was primarily an exploratory study.
Our goal was to evaluate whether the network centrality of
a method had any association with assertion placement. A
wide variety of ways exist to measure different properties of
network positions; we tried a variety of them. In essence, we
were testing a set of hypothesis as to the associations of these
network centrality measures with assertion placement. For the
ones that showed a significant association, we corrected the

project methods with assert p-value
beanstalkd 39 0.0005384
cev 116 8.54E-63

cjdns 576 5.10E-13
firmware 66 0.00033579

gee 5107 0
gumbo-parser 82 2.87E-09
iq 109 3.79E-11

julia 6 4.46E-05

libuv 378 2.10E-53

luvit 15 0.987256

php-src 103 0.00025826
python-for-android 85 1
twemproxy 156 1.67E-15
xbme 558 2.59E-15

(a) WMW nonparametric test to compare normalized hub-score between
methods with and without assertions. The p-values are associated with
a one-sided test that methods with asserts have higher hub score than
those without.

Dependent variable:

use_assert (as binary)

logistic
LOC 0.004*** (0.0002)
hub score 7.661*** (0.151)
as.numeric(project) —0.105*** (0.003)
Constant —1.974%** (0.029)
Observations 83,785
Log Likelihood —22,529.090
Akaike Inf. Crit. 45,066.190

(b) A logistic binomial regression model confirms with statistical
significance that methods with assertion have more hub score, while
controlling for LOC and project. Here, project is treated as dummy

variable.

TABLE VI: Callgraph Centrality vs. Assertion usage

p-values to account for multiple hypothesis testing and bound
the family-wise error rate.

We gathered call graphs of several project, after gathering it
as described in Note that this analysis is done
on the most rescent version of the projects. We had 18 projects
in total that were primarily written in C, for which we were
able to gather call graphs (as explained earlier, C++ call graphs
are complicated by run-time despatch, which is not always
statically derivable). We further removed the projects that had
only 1 assert call in the entire project. This removed 4 projects,
leaving us with 14 large projects that together include about
99% of all the methods from the full set of 18 projects.

To understand assertion usage w.rt. project architecture, we
performed the experiment in two ways. First, for each project
call graph we measured in-degree, out-degree, betweenness
centrality, authority, and hub scores (5 metrics in all) of each
node, i.e. method. The in-degree and out-degree of a method
m are counts of calls into, and calls from m. Betweenness
centrality [1] of a node m is a proportionate measure of the
number of geodesics passing on which m lies; it relates to the
mediating role played by a method: the higher the betweenness,
the more different of call-chains the method could potentially
be involved in. Hub and authority are mutually re-inforcing
measures of information sourcing and aggregation [25]]. Hubs,
essentially, represent methods which are important aggregators
and dispensers of information to other methods; authorities
are methods to and from which hubs despatch and collect
information. Hubs and authorities are recursively defined and
mutually re-inforcing: the more authorities a hub calls, the
more hub-by it is; the more an authority is called from hubs,
the more authoritative it becomes.

Several measures: out-degree, betweenness centrality, and
hub-score are strongly correlated with size. Larger methods
call more methods, and thus have higher out-degree; higher
out-degree leads to higher betweenness centrality and hub-
score. In-degree, on the other hand, is unrelated to size. We
therefore normalize all the size-correlated measures by dividing
them by lines of code. For each project, we then partition the
methods into two groups based on whether they use an assert

statement or not. Finally, we compare the normalized network
metrics of the two groups using the unpaired Wilcoxon-Mann-
Whitney test. In this exploration, the only measure that we
found consistently related to assertions in most projects was
the hub score. Table [VIal shows the result of the Wilcoxon-
Mann-Whitney test for the normalized hub score.

In most of the projects, methods with asserts have high
hub-score with statistical significance. For only two projects
(python-for-android and luvit) were the results not
significant. While the former showed the opposite trend i.e.
methods with assertion have significantly low hub score,
luvit results remained insignificant in the opposite direction
as well. Since we tested 5 hypothesis per project, very
conservatively, all low p-values could be multiplied by 5 (the
Bonferoni correction); all significant ones clearly remain so.

We performed similar tests for other network properties.
In only five projects, methods with assertions have greater
authority and in three projects they have lower authority; the rest
were not statistically significant. Nothing could thus be inferred
about the association of assertion usage with authoritativeness
in a call graph. Similar inconclusive results were found for
in-degree, out-degree and betweenness measures.

To confirm that developers use asserts primarily in the hub
methods, we further performed a logistic regression on the
dataset (see Table [VID). Each row in the logistic regression
corresponds to a method per project. The dependent variable is
use_assert, a binary variable, indicating whether a method
is using at least one assertion. The control variables are lines of
code, hub score, and project (project is treated as a categorical
variable, dummy encoded). The highly significant, positive
coefficient for hub score affirms that methods with asserts are
associated with high hub scores.

To further understand why developers choose to use asserts
in hub methods, we manually investigated the functionalities
of several methods that use asserts and also have high hub
scores. One example to describe this relationship is the
encryptHandshake method in file CryptoAuth.c,
which appears in the project cjdns, an IPv6 network
encryption tool. This method is used to encrypt packets before

sending them over the network, thus belonging to the core
functionality of the project. This method is called by another
three methods: sendMessage, decryptHandshake,
and CryptoAuth_encryptHandshake, the first
two are important methods in the project with high
authority and hub scores, respectively. For example,
sendMessage has 5" highest authority score in cjdns.
encryptHandshake in turn calls 24 other distinct
methods. Thus, encryptHandshake turns out to be an
important aggregator and dispenser of information in this
context. encryptHandshake in turn uses asserts five
times to check the validity of encrypted keys. For example,
Assert_true (!Bits_memcmp (wrapper—->herIp6, —
calculatedIp6, 16)) is used to make sure they didn’t
memcpy in an invalid key, as commented by the developer.

Dependent variable:
total added assertion

Intercept —0.600** (0.300)
total added lines 0.515%** (0.147)
total developers —0.250 (0.198)
project age 0.117 (0.158)
CodeAnalyzer 0.549 (0.444)
Database 0.614 (0.531)
Framework —0.152 (0.441)
Library 0.194 0.411)
Middleware —0.311 (0.696)
Observations 60

Log Likelihood —65.072

0 40,563.770 (889,310.700)
Akaike Inf. Crit. 148.145

*p<0.1; **p<0.05; **Fp<0.01

TABLE VII: Number of assertion added to a project does not depend
on the project’s application domain. Domains are coded with Dummy
Coding with Application domain as reference. Thus all the other
domains are compared w.r.t. Application domain.

ROH, Does the domain of application of a project relate to
assertion use?

In our recent work on code defects in the GitHub corpus [40]],
we categorized projects based on their application domain into
six general groups: Applications, Code Analyzer, Database,
Framework, Library, and Middleware. To investigate whether
the use of asserts depended in anyway on the application
domain, we used negative binomial regression due to the smaller
sample size (see Methodology), with the domain as a factor,
while controlling for the total number of lines, developers, and
age of the project. We filtered out 9 of our 69 projects in
which there were only 1 or 2 developers, or which had 30000
or more asserts added, to control for outliers, leaving us 60
observations. Out of those 17, 6, 4, 14, 13, and 6, were in
the respective domains above. The 6 application domains were
encoded as categorical variables, using dummy coding, with
the Application domain as the reference category. The results
are shown in TABLE [VIII We observe that at this level of
coarse modeling, only the total number of lines is a significant
positive predictor for the number of asserts, as expected. While
the coefficients in front of the domain variables range from
negative to positive, none of them are significant. We conclude

that there is no appreciable effect of the application domain
on the asserts added, when controlling for code length, age,
and number of developers. As with the other models, variance
inflation was well-controlled.

VI. THREATS TO VALIDITY

Several threats should be acknowledged.

Bug identification We used commit messages, rather than bug
databases, to identify bugs. While this entails some risks of
false positives and/or false negatives (as also do commit links
to bug databases [3]) we felt compelled to adopt this approach,
since we wanted to focus on bug fix commits both during
interactive development as well as on reported bugs.

Call Graph We use Cscope to generate call graphs, which is
not infallible [35]]; when methods with identical names are
present in different files, Cscope cannot distinguish them. We
ameliorate this by looking at a method from both callee and
caller perspective. However, with large samples, and reasonable
network centrality measures such as hub, we expect that call
graph fidelity is not a major concern. In addition, we only
examined call graphs for C, the results may not apply for C++.

Assert identification Our detection of asserts is based on a
string-matching heuristic. Besides the standard C assert ()
macro, some projects have custom-defined macros which we
worked to unearth and thus detect. However, our detection has
some issues, as outlined earlier in We submit that
the large-sample results we have obtained are robust enough
to ameliorate concerns arising from the fidelity of our assert
and bug detection methods.

General Comments It’s entirely possible that developers in
open-source and commercial settings use asserts differently;
in general, ownership can be enforced by fiat in commercial
software, not so in open-source. This might lead to differences
in the use and effect of asserts. Our results may not generalize
beyond open-source. Our classification of domains is not
objective, and others may disagree with it.

Conclusions While assertions promise great value for auto-
mated verification, in practice developers use them, often
sparingly, mostly to quickly detect & report invalid system
states. Even in this limited context, our data suggests that the
addition of asserts is associated with reduced defects; the data
also suggests that asserts help with maintaining the quality of
code even as additional developers contribute code. The data
also suggests that developers add asserts to methods they have
prior knowledge of, and of which they have greater ownership.

Our work essentially supports the common folklore concern-
ing asserts: they do have a salutary effect on software quality,
and appear to play a positive role in collaborative software
development, when many programmers are working on the
same method. In future studies, we wish to see if asserts make
finding and fixing real bugs, and not just bugs introduced
retrospectively by researchers, easier. Additionally, we wish to
group asserts into different categories to better understand their
use, and ultimately to be able to identify and create useful
asserts in relevant locations.

[1]

[2

—

[3

[4

=

[5

=

[8]

[9

—

[10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

M. Barthelemy. Betweenness centrality in large complex networks. The
European Physical Journal B-Condensed Matter and Complex Systems,
38(2):163-168, 2004.

B. Baudry, Y. L. Traon, and J.-M. Jézéquel. Robustness and diagnosability
of oo systems designed by contracts. In Proceedings of the 7th
International Symposium on Software Metrics, METRICS °01, pages
272—, Washington, DC, USA, 2001. IEEE Computer Society.

C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and
P. Devanbu. Fair and balanced?: bias in bug-fix datasets. In Proceedings of
the the 7th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software
engineering, pages 121-130. ACM, 2009.

C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu. Donf
touch my code!: examining the effects of ownership on software quality.
In Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, pages
4-14. ACM, 2011.

K. Borner, S. Sanyal, and A. Vespignani. Network science. Annual
review of information science and technology, 41(1):537-607, 2007.

L. C. Briand, Y. Labiche, and H. Sun. Investigating the use of analysis
contracts to support fault isolation in object oriented code. In Proceedings
of the 2002 ACM SIGSOFT International Symposium on Software Testing
and Analysis, ISSTA 02, pages 70-80, New York, NY, USA, 2002. ACM.
A. C. Cameron and P. K. Trivedi. Regression analysis of count data.
Number 53. Cambridge university press, 2013.

P. Chalin. Logical foundations of program assertions: What do
practitioners want? In Proceedings of the Third IEEE International
Conference on Software Engineering and Formal Methods, SEFM ’05,
pages 383-393, Washington, DC, USA, 2005. IEEE Computer Society.
P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll. Beyond assertions:
Advanced specification and verification with jml and esc/java2. In Formal
methods for components and objects, pages 342-363. Springer, 2006.
L. A. Clarke and D. S. Rosenblum. A historical perspective on runtime
assertion checking in software development. SIGSOFT Softw. Eng. Notes,
31(3):25-37, May 2006.

J. Cohen. Applied multiple regression/correlation analysis for the
behavioral sciences. Lawrence Erlbaum, 2003.

K. Cremer, A. Marburger, and B. Westfechtel. Graph-based tools for
re-engineering. Journal of software maintenance and evolution: research
and practice, 14(4):257-292, 2002.

K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai. The confounding
effect of class size on the validity of object-oriented metrics. Software
Engineering, IEEE Transactions on, 27(7):630-650, 2001.

M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The daikon system for dynamic detection of
likely invariants. Sci. Comput. Program., 69(1-3):35-45, Dec. 2007.
H.-C. Estler, C. Furia, M. Nordio, M. Piccioni, and B. Meyer. Contracts
in practice. In C. Jones, P. Pihlajasaari, and J. Sun, editors, FM 2014:
Formal Methods, volume 8442 of Lecture Notes in Computer Science,
pages 230-246. Springer International Publishing, 2014.

J. Eyolfson, L. Tan, and P. Lam. Do time of day and developer experience
affect commit bugginess? In Proceedings of the 8th Working Conference
on Mining Software Repositories, pages 153-162. ACM, 2011.

N. E. Fenton and S. L. Pfleeger. Software metrics: a rigorous and
practical approach. PWS Publishing Co., 1998.

R. W. Floyd. Assigning meanings to programs. Mathematical aspects of
computer science, 19(19-32):1, 1967.

J.-F. Girard and R. Koschke. Finding components in a hierarchy
of modules: a step towards architectural understanding. In Software
Maintenance, 1997. Proceedings., International Conference on, pages
58-65. IEEE, 1997.

S. Henry and D. Kafura. The evaluation of software systems’ structure
using quantitative software metrics. Software: Practice and Experience,
14(6):561-573, 1984.

T. Hoare. Assertions in modern software engineering practice. In 2013
IEEE 37th Annual Computer Software and Applications Conference,
pages 459—459. IEEE Computer Society, 2002.

T. Illes-Seifert and B. Paech. Exploring the relationship of a file’s history
and its fault-proneness: An empirical method and its application to open
source programs. Information and Software Technology, 52(5):539-558,
2010.

JContract. Using design by contract to automate java software and
component testing, 2004.

[24]
[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

(34]

(35]

[36]

[37]

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

H. Jeong, S. P. Mason, A.-L. Barabasi, and Z. N. Oltvai. Lethality and
centrality in protein networks. Nature, 411(6833):41-42, 2001.
J. M. Kleinberg. Authoritative sources in a hyperlinked environment.

Journal of the ACM (JACM), 46(5):604-632, 1999.

G. Kudrjavets, N. Nagappan, and T. Ball. Assessing the relationship
between software assertions and faults: An empirical investigation. In
Proceedings of the 17th International Symposium on Software Reliability
Engineering, ISSRE ’06, pages 204-212, Washington, DC, USA, 2006.
IEEE Computer Society.

G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of jml:
A behavioral interface specification language for java. SIGSOFT Softw.
Eng. Notes, 31(3):1-38, May 2006.

N. G. Leveson, S. S. Cha, J. C. Knight, and T. J. Shimeall. The use of
self checks and voting in software error detection: An empirical study.
IEEE Trans. Softw. Eng., 16(4):432-443, Apr. 1990.

S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R. Gansner.
Using automatic clustering to produce high-level system organizations of
source code. In International Conference on Program Comprehension,
pages 45-45. IEEE Computer Society, 1998.

S. McConnell and D. Johannis. Code complete, volume 2. Microsoft
press Redmond, 2004.

B. Meyer. Applying "design by contract". Computer, 25(10):40-51, Oct.
1992.

A. Mockus and L. G. Votta. Identifying reasons for software changes
using historic databases. In ICSM ’00: Proceedings of the International
Conference on Software Maintenance, page 120. IEEE Computer Society,
2000.

H. A. Miiller, S. R. Tilley, and K. Wong. Understanding software systems
using reverse engineering technology perspectives from the rigi project.
In Proceedings of the 1993 conference of the Centre for Advanced
Studies on Collaborative research: software engineering-Volume 1, pages
217-226. IBM Press, 1993.

M. Muller, R. Typke, and O. Hagner. Two controlled experiments
concerning the usefulness of assertions as a means for programming. In
Software Maintenance, 2002. Proceedings. International Conference on,
pages 84-92, 2002.

G. C. Murphy, D. Notkin, W. G. Griswold, and E. S. Lan. An empirical
study of static call graph extractors. ACM Transactions on Software
Engineering and Methodology (TOSEM), 7(2):158-191, 1998.

G. C. Murphy, D. Notkin, and K. Sullivan. Software reflexion models:
Bridging the gap between source and high-level models. In ACM
SIGSOFT Software Engineering Notes, volume 20, pages 18-28. ACM,
1995.

N. Polikarpova, I. Ciupa, and B. Meyer. A comparative study of
programmer-written and automatically inferred contracts. In Proceedings
of the Eighteenth International Symposium on Software Testing and
Analysis, ISSTA 09, pages 93—104, New York, NY, USA, 2009. ACM.
R Development Core Team. R: A language and environment for statistical
computing, 2008. ISBN 3-900051-07-0.

F. Rahman and P. Devanbu. Ownership, experience and defects: a fine-
grained study of authorship. In Proceedings of the 33rd International
Conference on Software Engineering, pages 491-500. ACM, 2011.

B. Ray, D. Posnett, V. Filkov, and P. Devanbu. A large scale study of
programming languages and code quality in github. In Proceedings of
the ACM SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, FSE ’14. ACM, 2014.

D. S. Rosenblum. A practical approach to programming with assertions.
IEEE Trans. Softw. Eng., 21(1):19-31, Jan. 1995.

Z. M. Saul, V. Filkov, P. Devanbu, and C. Bird. Recommending random
walks. In Proceedings of the the 6th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, pages 15-24. ACM, 2007.

T. W. Schiller, K. Donohue, F. Coward, and M. D. Ernst. Case studies and
tools for contract specifications. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 596607, New
York, NY, USA, 2014. ACM.

K. Shrestha and M. J. Rutherford. An empirical evaluation of assertions
as oracles. In Proceedings of the 2011 Fourth IEEE International
Conference on Software Testing, Verification and Validation, ICST 11,
pages 110-119, Washington, DC, USA, 2011. IEEE Computer Society.
A. Tosun, B. Turhan, and A. Bener. Validation of network measures
as indicators of defective modules in software systems. In Proceedings
of the 5th international conference on predictor models in software
engineering, page 5. ACM, 2009.

J. Voas and K. Miller. Putting assertions in their place. In Software
Reliability Engineering, 1994. Proceedings., 5th International Symposium
on, pages 152-157, Nov 1994.

[47] M. M. Wasko and S. Faraj. Why should i share? examining social capital
and knowledge contribution in electronic networks of practice. MIS
quarterly, pages 35-57, 2005.

[48] S. Yau and R. Cheung. Design of self-checking software. In ACM
SIGPLAN Notices, volume 10, pages 450—455. ACM, 1975.

[49]

[50]

H. Yin and J. Bieman. Improving software testability with assertion
insertion. In Test Conference, 1994. Proceedings., International, pages
831-839, Oct 1994.

T. Zimmermann and N. Nagappan. Predicting defects using network
analysis on dependency graphs. In Proceedings of the 30th international
conference on Software engineering, pages 531-540. ACM, 2008.

	Introduction
	Research Goals
	Related Work
	Studies of Assertion Usage
	Quality impact of Assertion use

	Methodology
	Study Subjects
	Data Collection
	Statistical Methods

	Results
	Case Study

	Threats to validity
	References

