
One Size Does Not Fit All: An Empirical Study of Containerized
Continuous Deployment Workflows

Yang Zhang
National University of Defense Technology, China

yangzhang15@nudt.edu.cn

Bogdan Vasilescu
Carnegie Mellon University, USA

vasilescu@cmu.edu

Huaimin Wang
National University of Defense Technology, China

hmwang@nudt.edu.cn

Vladimir Filkov
DECAL Lab, University of California, Davis, USA

filkov@cs.ucdavis.edu

ABSTRACT

Continuous deployment (CD) is a software development practice

aimed at automating delivery and deployment of a software product,

following any changes to its code. If properly implemented, CD to-

gether with other automation in the development process can bring

numerous benefits, including higher control and flexibility over

release schedules, lower risks, fewer defects, and easier on-boarding

of new developers. Here we focus on the (r)evolution in CD work-

flows caused by containerization, the virtualization technology that

enables packaging an application together with all its dependencies

and execution environment in a light-weight, self-contained unit,

of which Docker has become the de-facto industry standard. There

are many available choices for containerized CD workflows, some

more appropriate than others for a given project. Owing to cross-

listing of GitHub projects on Docker Hub, in this paper we report

on a mixed-methods study to shed light on developers’ experiences

and expectations with containerized CD workflows. Starting from a

survey, we explore the motivations, specific workflows, needs, and

barriers with containerized CD. We find two prominent workflows,

based on the automated builds feature on Docker Hub or continu-

ous integration services, with different trade-offs. We then propose

hypotheses and test them in a large-scale quantitative study.

CCS CONCEPTS

• Software and its engineering→ Software maintenance tools;

KEYWORDS

Continuous Deployment, Containerization, Docker, GitHub

ACM Reference Format:

Yang Zhang, Bogdan Vasilescu, Huaimin Wang, and Vladimir Filkov. 2018.

One Size Does Not Fit All: An Empirical Study of Containerized Continuous

Deployment Workflows. In Proceedings of the 26th ACM Joint European Soft-

ware Engineering Conference and Symposium on the Foundations of Software

Engineering (ESEC/FSE ’18), November 4–9, 2018, Lake Buena Vista, FL, USA.

ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3236024.3236033

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3236033

1 INTRODUCTION

Continuous deployment (CD), also referred to as continuous de-

livery,1 is the fast-paced, automation-heavy software engineering

approach in which teams work in short iterations to produce soft-

ware that is deployable (production ready) at any time [31]. CD has

promised to deliver a revolution over the twice-yearly or so stan-

dard for software releasing, through greater control and flexibility

over feature releases, incremental deployment of value, lower risks,

fewer defects, easier on-boarding of new developers, less off-hours

work, and a considerable uptick in confidence [45]. It is not surpris-

ing then that the Perforce report [49] found that 65% of software

developers, managers, and executives have used CD. Moreover,

the “State of DevOps” survey [52], with 3,200 participants from

around the world, found CD positively impacts IT performance and

negatively impacts deployment pain.

On the other hand, industry reports and academic studies have

found that implementing the automation, i.e., pipelines (workflows),

needed to properly provide CD is challenging and takes a lot of

time and tuning, due to the many moving parts and the specific

needs of each project or organization [8, 31, 49, 56]. A prototypical

CD workflow involves a continuous integration (CI) service, like

Jenkins [60] and Travis [41], which is triggered by new changes

in the version control system to build, test, and deploy the pack-

aged application. Many separate and often redundant tools can

be pipelined to assemble a CD system for a project or organiza-

tion. How-to guides exist [2, 30], and turn-key solutions, mainly

commercial, are also available [34]. Previous studies have looked

at implementations of CD in individual organizations [45, 55, 63]

and one study has compared implementations in 15 different or-

ganizations [56]. It is commonly reported in those studies that the

benefits gained are many but that implementing CD takes time.

As more and more experience is being gained with different ways

to implement CD, it has become obvious that different solutions,

i.e., workflows, are possible, and that they may fit different needs.

Stated differently, choosing one available workflow vs another may

make a big difference to a specific project. Thus, maps of project

needs onto prototype CD workflows would be considered helpful.

Here we focus on studying the (r)evolution in CD workflows

caused by containerization, the virtualization technology that en-

ables packaging an application together with all its dependencies

and execution environment in a light-weight, self-contained unit.

1Although technically continuous deployment encompasses continuous delivery, the
two terms tend to be used interchangeably in practice by developers. We don’t distin-
guish between the two here; we define the workflows precisely, below.

295



ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yang Zhang, Bogdan Vasilescu, Huaimin Wang, and Vladimir Filkov

Containerization has transformed CD workflows, promising ad-

ditional speedups and higher level of abstraction. Containers (or

images) encapsulating a packaged application ready for deploy-

ment can be specified declaratively, versioned together with the

rest of the infrastructure code, built automatically, and published

to some cloud-based registry for easy access by users and other

applications. Among containerization technologies, Docker contain-

ers have become the de-facto industry standard. Since inception in

2013, Docker containers have been downloaded 29B+ times2 and

their usage is spreading rapidly; e.g., the “Annual Container Adop-

tion” report [50] found that 79% of companies chose Docker as their

primary container technology. Thus, studying Docker container

usage is relevant to most of the containerization community.

In this paper we seek to aid in deciding how to appropriately

choose betweenDocker-enabled CDworkflows, by collating lessons

learned and offering data-driven evidence from different CD imple-

mentations in open source software (OSS) projects. We focus on

OSS projects on GitHub, the largest public code repository host, and

Docker Hub3, the most popular cloud-based registry for Docker

containers, which hosts over 2 million Docker image repositories

as of March 2018; 94% of these images are linked to a GitHub repos-

itory, enabling the data mining for our study.

As with any CD pipeline, developers have considerable freedom

to define custom Docker-enabled workflows, choosing, e.g., what CI

service to use, what to include in the images, and how to automate

their construction and publication. Starting from these two public

sources of data, GitHub and Docker Hub, in this paper we report

on a mixed-methods study to explore the following questions:

RQ1:What motivations, unmet needs, and barriers do developers face

with their Docker-enabled CD workflows? (see §3)

RQ2:What are the differential benefits among specific Docker-enabled

CD workflows? (see §4)

The first part of our study is a multi-stage 150+ developer survey,

the results of which revealed several common CD implementations

in projects publishing images to Docker Hub: while some projects

write their own scripts to deploy images, most use available tools

which fit together without extensive retooling with their existing

solutions, e.g., standard CI services like Jenkins, Travis, and CircleCI.

We found that two Docker image deployment workflows4 were

most prominent:

(1) a Docker Hub auto-builds Workflow (denoted DHW ), where the

registry itself builds the image automatically whenever GitHub

source files change; and

(2) a CI-based Workflow (denoted CIW ), where CI tools build images

during the build and test stage, then publish to Docker Hub.

Additionally, the survey answers also generated hypotheses re-

lated to specific CD workflow outcomes: release frequency, build

results, stability, and build latency, such as image build latency tends

to worsen over time, and CIW tends to have higher image release

frequency than DHW (see §3.4 and §3.6). To test these hypothe-

ses, in the second part of our study we performed data gathering

and statistical modeling. We collected data from 1,125 projects on

2https://www.docker.com/company, as of March 2018.
3https://hub.docker.com/
4These resemble the GitHub push and pull-based models: the CI workflow “pushes”
the Docker image, while the DH workflow “pulls” it.

Docker Hub, measuring build latency, release frequency, config

file sizes and changes, commit sizes, testing times, and discussion

lengths. The above four outcomes (release frequency, build results,

stability, and build latency) were regressed against an extensive set

of variables, fitted to the processed data, and well fitting models

were obtained. In summary, we found that:

• CIW is associated with higher image release frequency than

DHW. But over time, the release frequency of both workflows

tends to drop;

• Image build latency tends to increase over time. Interestingly,

CIW tends to have shorter build latency than DHW;

• Image build configuration stability tends to increase over time.

But CIW tends to have lower Dockerfile stability than DHW;

• CIW is associated with more image build errors than DHW;

• There are notable differences within CIWs, not just between the

DH and CI workflows.

Our survey questions, scripts, and data are online at https://

github.com/yangzhangs/cd_replication.

2 BACKGROUND AND RELATEDWORK

Docker and Docker Hub. Docker (https://www.docker.com) is

an OSS project implementing operating system-level virtualization;

it builds on many technologies from operating systems research:

LXC [22] (Linux Containers), virtualization of the OS [7], etc. The

technology is primarily intended for developers to create and pub-

lish containers [39]. With containers, applications can share the

same operating system and, whenever possible, libraries and bina-

ries [6]. The content of the container is defined by declarations in

the Dockerfile [40] which specifies the Docker commands and

the order of their execution. Docker launches its containers from

Docker image, which is a series of data layers on top of a base im-

age [23]. When developers make changes to a container, instead of

directly writing the changes to the image of the container, Docker

adds an additional layer with the changes to the image [42]. Since

production environment replicas can be easily made in local com-

puters, developers can test their changes in a matter of seconds.

Also, changes to the containers can be made rapidly as only needed

sections are updated following a change. This makes Docker very

suitable for CI and CD implementations [1].

Existing studies related to Docker containers have typically fo-

cused on performance aspects [43], security vulnerabilities [20],

and basic usage [17]. In particular, Cito et al. [17] found that de-

ployment pipelines are, in most part, structured in multiple and

consecutive phases, but that, thus far, there has been little research

on Docker-enabled workflows in CD processes. A recent study has

pointed out that software engineering tasks can benefit from the

mining of container image repositories, like Docker Hub [65].

DockerHub is Docker’s cloud-based registry, containing 2,018,057

Docker images as of March 2018. Docker Hub provides GitHub in-

tegration as well as some featured tools, e.g., automated builds [29],

which allow developers to build their images automatically from

GitHub sources [7]. The build data and Dockerfile information on

Docker Hub is available for mining, if the repositories are public.

CD and Deployment Pipelines. Continuous Deployment (CD) is

a practice in which incremental software updates are tested, vetted,

and deployed to production environments [54]. CD leverages the

296



One Size Does Not Fit All: An Empirical Study of Containerized ... ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

CI [41] process and extends it to include the immediate deployment

of software [18]. Humble et al. [32] reported on an early overview of

CD practices and introduced several guidelines. Vassallo et al. [63]

investigated CD practices at ING [62], focusing on their impact on

the development process and management of technical debt. Savor

et al. [56] reported on an empirical study conducted in two high-

profile Internet companies; they found that the adoption of CD

does not limit scalability in terms of productivity in an organization

even if the system grows in size and complexity. In summary, prior

work mostly focused on defining CD and describing particular

implementations in a small sample of organizations or projects.

The emergence of CD also increases the importance of deploy-

ment pipelines [36]. A deployment pipeline should include explicit

stages, e.g., building and packaging, to transfer code from a source

repository to the production environment [3]. In each stage, devel-

opers can choose different tools or services, which, in turn, will

produce different CD workflows. It is becoming increasingly clear

that one size does not fit all, with recent studies by Shahin et al. [58],

Zhao et al. [66], or Widder et al. [64] showing that the choice of

CI/CD tools and infrastructures is highly context dependent.

Despite the importance of containerization and Docker in in-

dustry, to the best of our knowledge, no existing research has in-

vestigated the barriers and needs developers face when using con-

tainerized CD workflow, or what trade-offs developers must make

when choosing different CD workflows. With this paper, we at-

tempt to address this literature gap, and provide insights into the

Docker-enabled CD workflows in the OSS community.

3 DEVELOPER SURVEY

Our study starts with a qualitative exploration of developers’ ex-

periences and expectations using Docker containers as part of CD

workflows (RQ1), for which we conducted a survey. Our goals were:

(1) to gain understanding of how people use containerized CD, fo-

cusing on what motivations, barriers, and unmet needs developers

face with their Docker-enabled CD workflows; and (2) to generate

hypotheses to be tested in a follow-up quantitative study.

3.1 Survey Methods

Survey design and participants. Since little is published about

containerized CD, we designed the survey broadly, around use cases

and pain points, and ran a pilot to refine the protocol. Questions

were inspired mainly by SE literature on trade-offs in CI [27] and

online discussions about CD and Docker containers.5 Specifically,

the survey included multiple choice and open-ended questions, or-

ganized in four parts: (1) motivations for doing CD; (2) current CD

tools and workflows; (3) unmet needs; and (4) barriers and pain

points. We piloted the survey before full deployment. To obtain

developer contact information, we first mined all projects with

Docker images hosted on Docker Hub, that had source code reposi-

tories on GitHub.6 Using the GitHub API, we then identified those

projects’ owners and their contacts, sampled 1,000, and sent them

email invitations with a link to the online form. We only surveyed

project owners as we felt they would be most familiar with the

overall development of the project.

5From the Docker forum, https://forums.docker.com
6Following “Source Repository” links on Docker Store pages, https://store.docker.com

Respondents and analysis.Within 10 days, we received 168 re-

sponses, for a response rate of 16.8%, consistent with other software

engineering online surveys [51]. Respondents indicated that their

experience in OSS was 8.6 years on average (median: 7; range 1—30),

while their CI/CD experience was 4.3 years on average (median:

3; range 1—20). Additionally, 32 participants replied to our email

invitations to show their interest in this research and to provide

valuable suggestions and feedback. Since no question was manda-

tory, the number of responses per question may vary; we report

actual numbers below. For open-ended questions, we used open

coding [21] in two phases. During a first round, we carefully read

the content of each answer and marked its keywords or statements.

Later, during a second round, we iteratively aggregated the descrip-

tions and summarized the categories. One author was involved in

coding, all authors in discussion and refinements.

3.2 Motivations for Doing CD

We start by gauging developer’s motivations for doing CD in gen-

eral (open ended, 140 answers), to evaluate how much our popula-

tion shares CD insights derived in other contexts. We uncovered a

spectrum of motivations for doing CD (Table 1). Next, we contextu-

alize these uncovered motivation categories with prior work, and

illustrate each with representative quotes.

[M1] CD helps us deploy automatically instead of doing it

manually. We expected that automation is a major concern for

developers, and the survey answers confirmed that. E.g., R79 re-

marked “because the project will be built automatically, no need for

me to build the image and push it to the server”. This is consistent

with Neely et al. [45], who pointed out that it is important to elimi-

nate all manual steps from a build in order to extend CI with release

and deployment automation.

[M2] CD gives us smoother and easier deployments. As per

Fowler [25], CI was presented as a way to avoid painful integra-

tions. CD goes one step further to automate a software release, as

it makes sure the software is production-ready, which provides de-

velopers with easier deployments. E.g., R71 responded, “Continuous
integration to accelerate the development and continuous deployment

to simplify the passes to production reducing the complexity”.

[M3] CD allows us keep our production reliable. Benefield [4]

reported that the deployment infrastructure, coupled with intensive

automated testing and fast rollback mechanisms, improves release

reliability and quality. With CD, the deployment process and scripts

are tested repeatedly before deployment to production, which keeps

the productionmore reliable. E.g., R26 remarked, [CD is] “convenient

and more reliable, less error prone as a manual deployment”.

[M4] CD makes releasing faster. Chen [8] reported that CD al-

lows delivering new software releases to customers more quickly.

By leveraging assistance provided with CD, project teams can re-

lease once a week on average, or more frequently if desired. Some

of our respondents confirmed this; e.g., R120 said, [CD lets them]

“ship as early as possible”.

[M5] CD lets us catch errors earlier to minimize failures. By

interviewing developers, Hilton et al. [27] found that the biggest

perceived benefit of CI is early bug detection. So we would expect

that CD also helps catch errors earlier to prevent the deployment

of broken code. Our survey responses confirmed this. E.g., R51 said,

297



ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yang Zhang, Bogdan Vasilescu, Huaimin Wang, and Vladimir Filkov

Table 1: Developers’ motivation for doing CD. N=140.

Motivation Total Perc.∗

Helps us deploy automatically instead of doing it manually 60 42.9%
Gives us smoother and easier deployments 27 19.3%
Allows us to keep our production reliable 22 15.7%
Makes releasing faster 14 10.0%
Lets us catch errors earlier to minimize failures 11 7.9%
Can enforce a deterministic workflow 11 7.9%
Lets us spend less time on maintenance and configuration 9 6.4%
Enhances the testing and validity checking 8 5.7%
Allows us to share our work and get continuous feedback 4 2.9%
∗One answer may contain multiple codes; percentages need not add up to 100.

[CD helps them] “find the problem as soon as possible. Avoid building

break that other developer won’t be affected”.

[M6] CD can enforce a deterministic workflow. Schermann et

al. [57] found that deployment workflows, i.e., structuring the re-

lease process into multiple and consecutive phases, is widespread.

Their study reported that 68% of the survey respondents use the

same CDworkflow for dealing with issues as for every other change.

And 74% of respondents agreed that they would release more fre-

quently than they actually do by following a specific workflow.

E.g., R115 said, [CD gave them] “deterministic workflow” and R18
said, [they want to use CD] “because it can highly import the release

phase. Change in one place will take an effort on other systems”.

[M7] CD lets us spend less time on maintenance and config-

uration. Developers perceive that not treating configuration like

code leads to a significant number of production issues [47]. Devel-

opers used to spend 20% of their time setting up and fixing their test

environments. CD can automatically set up the environments [8],

which allows developers to spend their effort and time on more

valuable activities. As R64 said, [they use CD because they want]

“to optimize time, focusing on developing the actual application”.

[M8] CD enhances the testing and validity checking.Mantyla

et al. [38] analyzed the effects of moving from traditional to rapid

releases on Firefox’s system testing. Their study revealed that CD

allows less time for testing activities but enables fast and thorough

investigation of software features. Not surprisingly, this was a

common theme among our survey respondents. E.g., R78 noted

that [CD] “helps with testing, less hassle”.

[M9]CDallows us to share ourwork and get continuous feed-

back. Krusche et al. [35] reported that with CD, customers can

evaluate the enhancements and provide feedback immediately and

in a continuous way, which improves communication between the

company and its customers. Continuous feedback lets developers

spend time developing the right things rather than correcting mis-

takes in functionality [46]. In our survey, R167 answered that, “It

helps me share my work with other contributors easily”, and R156
pointed out that [under CD, they can get] “fast, reliable feedback”.

Developers report doing CD to reduce work, cost, and time spent

onmaintenance and configuration. They also report that CD helps

them guarantee quality, consistency, reliability, and enhances

their development process.

3.3 Tools and Workflows

We asked developers which Docker workflows they subscribe to in

their current CDworkflow. Most report either the Docker Hub auto-

builds (DH; 44.1%) or the CI-based (CI; 34.5%) workflows (Figure 1):

Sources & 

Dockerfile

Build images with sources Run tests on images

Docker HubCI servers GitHub

Deploy 

(push images)

Developers

Code

CD automated pipeline

Docker Hub automated builds (auto-builds)

auto-test

Figure 1: Overview of Docker-enabled CD workflows.

machine: 
  services: 
     - docker 
dependencies: 
  override: 
     - docker info 
     - docker build --rm=false -t circleci/elasticsearch. 
test: 
  override: 
     - docker run -d -p 9200:9200 circleci/elasticsearch; sleep 10 
     - curl --retry 10 --retry-delay 5 -v http://localhost:9200 
deployment: 
  hub: 
    branch: master 
    commands: 
     - docker login -e $DOCKER_EMAIL -u $DOCKER_USER -p $DOCKER_PASS 
            - docker push circleci/elasticsearch 

Figure 2: An example of Docker settings in CircleCI.

(1)DHWorkflow (DHW): Using automated builds [29] (auto-builds),

Docker Hub can automatically build images from GitHub source

files and push them to the corresponding Docker Hub repository.

When setting up auto-builds, developers create a list of branches

and tags they want to include in the Docker images. When they

push code to a source code branch for one of those listed image tags,

the push uses a webhook to trigger a new build, which produces a

Docker image. The built image is then pushed to Docker Hub.

(2) CI Workflow (CIW): Developers automatically build images

from source code using docker commands inside their CI builds; the

built image is then pushed to Docker Hub. The CI tools themselves

mostly integrate Docker services which, in turn, allow developers

to use docker commands to build and deploy images. Figure 2 shows

an example of a circle.yml file that specifies the standard Elas-

ticSearch Docker image and deploys it to Docker Hub in CircleCI.

CircleCI pre-installs the Docker Engine in the Linux build images,

as specified in circle.yml. Then developers can use the “docker
build” and “docker push” commands to build and deploy images.

We also asked respondents who use CIW which specific tools

they use. The top-3 most frequently used CI tools are Travis CI

(65.5% of respondents), Jenkins (24.1%), and CircleCI (17.2%).7 We

also found that, unexpectedly, 29.3% of respondents used two or

more CI tools simultaneously. The reasons mentioned were generic,

with the most common being that each CI tool has its respective

jobs or target projects that it is good for. E.g., R39 said, “You have

to use the part of CI tools that works best for you. ... So it is really

about which combination allows the best management”. Future work

should examine the interplay between these seemingly equivalent

and competing tools using qualitative methods.

In addition, 21.4% of respondents use other workflows. We asked

them what their CD workflow consists of, and coded their answers

7In GitHub report [53]: the Top-3 CI tools are Travis CI, CircleCI, and Jenkins.

298



One Size Does Not Fit All: An Empirical Study of Containerized ... ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 2: Other workflows. N=36.

Other workflow Total Perc.

Deploy by using other services or software tools 12 33.3%
Use custom scripts 9 25.0%
Use both the DH and CI workflows 8 22.2%
Automatically test with CI but manually build and deploy 7 19.4%

into 4 groups, summarized in Table 2:

[O1] Deploy by using other services or software tools. For ex-

ample, R17 told us their CD workflow is “a redhat open shift service

which is running based on kubernetes”;

[O2] Use custom scripts. For example, R48 said their CD work-

flow comprised “shell scripts written by me”;

[O3] Use both the DH and CI workflows. E.g., R74 answered, “I
have a base image that is auto-built from a different repo by docker-

cloud, and the main image which is built by CircleCI after a green

build, and pushed to docker hub”;

[O4] Automatically test with CI but manually build and de-

ploy. E.g., R53 told us their CD workflow is “Push changes→Pull

request→Travis confirm config it’s ok→Manual builds in Docker Hub

after QA in my current company”.

There is large uniformity in Docker-enabled CD workflows, with

two prevalent workflows: Docker Hub auto-builds (pull-based)

and continuous integration (push-based).

3.4 Unmet Needs

We asked developers about unmet needs and pain points with their

current CD workflows (open ended, 83 valid responses), and found

that 89.9% of respondents are satisfied with their current workflow.

We coded the remaining answers as listed in Table 3:

[N1] Quicker build speed and higher throughput. Like R4 told
us, in their CD workflow “one dockerfile takes more than 2 hours

to build and timeouts”. The CD processing speed will affect the

software release and developers’ work efficiency. As more tests

are written and more artifacts are added, the image build latency

is likely to increase. 21.3% of respondents experienced increasing

processing latency in their CD workflows over time, and 17.7%

would change their workflow because of the increasing latency.

[N2] Easier to learn and config. While Docker Hub and CI tools

offer a great deal of flexibility in how they can be used, this flexibility

still requires a large amount of configuration even for a simple

workflow. Like R109 told us, “sometimes, circleCI config and setup

is pain. Docs sometimes doesn’t help”. Also, complex configuration

would affect the developers collaboration, like R130 said, “It may

spent some time to teach your partner use the CD pipeline”.

[N3] Better build testing support. R27 told us, in their CD work-

flow, “Build testing is quite a pain. I had playing docker to build

OpenCV + NodeJS + Cairo which break while building the image. The

build process can take up to 20mins. If it’s break, I need to try other

configuration and rebuild again”. As we known, CI tools provide

good test integration, thus the build testing needs to be enhanced

for projects that use DH workflow. Like R62 said, “Probably I need a
Jenkins or Travis container in the chain to produce more code control

using some unit testing”.

[N4] Better multi-platform build support. Like R19 suggested,

“For applications, it’s more important to provide multi-platform build”.

Table 3: Developers’ unmet needs. N=83.

Needs Total Perc.

Quicker build speed and higher throughput 18 21.7%
Easier to learn and config 14 16.9%
Better build testing support 12 14.5%
Better multi-platform build support 11 13.3%
More features and tools integrated 11 13.3%
More flexibility and control 7 8.4%
Better support for getting info about failures and logs 6 7.2%
Better security and access controls 6 7.2%

Multi-platform build support is to meet the specific needs of dif-

ferent software development. Like R79 said, “Docker hub support

only x86_64 platform only. I hope that ARM support, like raspberry

pi, will be added in the future. ...”.

[N5] More features and tools integrated. Some respondents

would like their CI/CD system to integrate with more features

and tools. Like R81 said, “Docker cache still not supported without
big hacks on most CI suites (e.g. Travis)”.

[N6] More flexibility and control. Like R147 told us, “at some

point (we) will want to use a pipeline with more control and flexibility”.

In some CD workflows, there is still lack of flexibility of builds, i.e.,

the Dockerfile optimization. Like R94 said, “Its mainly a Docker-

related drawback: I would love to be able to build Dockerfiles that

have multiple images as base blocks (e.g. FROM Java8, Redis). In our

workflow we always end-up copying dockerfiles from other sources

and merging them in one.”.

[N7] Better support for getting info about failures and logs.

When CD fails, developers need to identify why their CD failed.

Better logging and storing test artifacts would make it easier to

examine failures. But the current CD platforms are still lack of

better support. Like R143 said, “DockerHub doesn’t give a whole lot

of detail vs. some other solutions (CodeShip, etc)”. R60 told us their

need is “getting info about failures and debugging of broken build”.

[N8] Better security and access controls. Since CD workflows

have access to the entire source code of a project, security and

access controls are vitally important. Shu et al. [59] reported that

more than 80% of Docker Hub images have at least one high severity

level vulnerability. Like R111 told us, their pain point about CD is

the “lack of automatic security upgrades”.

Developers would like their CD workflows to be both speedy

and simple to setup and maintain. This can cause some tension,

since adding configurability tends to increase complexity and

simplification may reduce flexibility.

Based on the previous discussion, we expect that unavoidable

complexity increases over time in CD workflows would slow down

the developers’ workflows. We hypothesize:

H1. Image release frequency tends to decrease over time.

In addition, a lack of better testing and debugging support would

cause developers to write more test scripts or add more complexity

to their build configurations, making their image build processes

burdensome. So we hypothesize:

H2. Image build latency tends to increase over time.

With more experience doing CD should also come more stability

of the Docker image configurations (i.e., the Dockerfile). After the

initial configuration, developers may need fewer additional changes

or improvements to their Dockerfiles over time. We hypothesize:

H3. Dockerfile stability tends to increase over time.

299



ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yang Zhang, Bogdan Vasilescu, Huaimin Wang, and Vladimir Filkov

3.5 Workflow Evolution

We also asked participants about changes to their CD workflows

over time (open ended, 71 answers). Among the respondents, 45.8%

report having changed their CD workflows at least once before,

with the common reasons (barriers) given being listed in Table 4.

[B1] Difficult to setup and maintain. Configuration and main-

tenance costs cause many developers to change their workflows.

For example, R119 switched their workflow because “the old CD

pipeline is a little harder to setup. It was necessary to write several

scripts to get everything working properly. The new CD pipeline is

easier to setup and maintain”.

[B2]Missing features I need. Like R37 described, their old work-

flow was “too slow and missing features”; the poor feature support

made some developers switch to a different workflow.

[B3] Weak support for automation. Some developers changed

their workflow because their old workflow had weak support for

automation. Like R128 told us, their old workflow contained “many

manual steps prone to errors”, while with the new workflow “every-

thing goes smoothly”.

[B4] Overly long build times. As we found earlier when asking

about CD needs, build speed affects the developers’ work efficiency.

Some developers changed their workflow due to slow image build

speed. For example, R159 told us, in their old CD workflow, “Cache

was dropped when the build executed, and for no good reason. So it

took too much time to build the image”.

[B5]More friction and failures. Brittle builds make the workflow

unreliable, which cause some developers to change their workflow.

For example, R66 said, “we noticed that the builds are not really

reliable since there wasn’t any testing. So we refactored the workflow

to TravisCI which is way better for testing, but has disadvantages in

speed of pushing and handling images on Docker Hub. But with a

little bit of scripting the problems went away”.

[B6] Experimenting with new tools. Some developers changed

their workflow because they wanted to use some new tools. Like

R43 answered, “just tried new stuff ”.

[B7] Steep learning curve. Complex processes and unfamiliar

configurations make some developers abandon their old workflow.

Like R76 told, their old workflow was “hard to learn, configure, or

plain inefficient”.

Developers encountered increased complexity, increased latency,

and decreased reliability in previous CD workflows. These barri-

ers caused them to switch to new CD workflows.

In a CIW, CI tools may provide more effective testing support

than in a DHW, which helps developers find more defects before

deploying. But a CIWmay require more complex configuration and

maintenance than a DHW, which increases the likelihood of build

failures. We hypothesize:

H4. CIW tends to have more failed builds than DHW.

Moreover, because CIWs require more configuration, it may take

more time to run these operations. We hypothesize:

H5. CIW tends to have longer build latency than DHW.

3.6 Specifics of DH and CI Workflows

We asked participants for more details on the perceived advantages

of DHW or CIW, giving them a choice of 7 predefined answers (Ta-

ble 5) plus the option to provide others. We collected 132 answers,

Table 4: Barriers with previous CD workflows. N=71.

Barriers Total Perc.

Difficult to setup and maintain 25 35.2%
Missing features I need 15 21.1%
Weak support for automation 13 18.3%
Overly long build times 10 14.1%
More friction and failures 10 14.1%
Experimenting with new tools 6 8.5%
Steep learning curve 4 5.6%

Table 5: Specific reasons for using a DH or CI workflow.

NDH=74, NCI=58.

Reasons DH workflow CI workflow

Reduce the time spent on setting up 63 (85.2%) 35 (60.3%)
Deploy more frequently 34 (45.9%) 34 (58.6%)
Increase confidence in build quality and results 32 (43.2%) 46 (79.3%)
Less CD processing latency 23 (31.1%) 22 (37.9%)
Allow higher flexibility of builds 17 (23.0%) 13 (22.4%)
Create more visibility into team’s workflow 16 (21.6%) 21 (36.2%)
Convenient custom settings and modifications 14 (18.9%) 17 (29.3%)

74 for DHW and 58 for CIW. For the DHW, the most important

reason given was to reduce the time spent on setting up (85.2%),

followed by to deploymore frequently (45.9%). Respondents also

gave other reasons, e.g., “it’s free and ready to work with GitHub

projects”, “Easy to share with other Docker users”. As for CIW, the

most important reason was to increase confidence in build qual-

ity and results (79.3%), followed by to reduce the time spent on

setting up (60.3%). Other reasons given were similar to the prede-

fined answer we provided, e.g., “automated test and quality control”.

Overall, we found that CIWs may provide developers more in-

tegration tests to help them find errors easier and faster before

publishing images to Docker Hub. This could make CIWs more

reliable, increasing developer confidence in the build quality. But

the DHW may provide developers with more automation and sim-

pler configuration, which allows them to shift the time spent on

setting up to other development activities. Also, we found some

other differences in developers’ goals when using the two work-

flows. More respondents (29.3%) thought CIWs have convenient

custom settings and modifications than respondents using the

DHW (18.9%). And more respondents (36.2%) thought CIWs cre-

ate more visibility into the team’s workflow than respondents

using the DHW (21.6%).

The DH and CI workflows may differ in release frequency, build

outcomes, build configuration stability, and build latency.

From the responses, CIWs may provide developers higher con-

figurability than the DHW, which should result in more efficient

CD workflows. So, we hypothesize:

H6. CIW tends to have higher release frequency than DHW.

Similarly, the high configurability of a CIW may provide devel-

opers more possibilities to revise their Dockerfile configurations.

We hypothesize:

H7. CIW tends to have lower Dockerfile stability than DHW.

It is very intuitive for us to expect a significant difference be-

tween CIW and DHW. But within CIWs, different CI tools should

have similar functions and roles in the CD workflow. Thus, we

hypothesize:

H8. Within CIWs, there should not be significant differences be-

tween different CI tools.

300



One Size Does Not Fit All: An Empirical Study of Containerized ... ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

4 LARGE-SCALE QUANTITATIVE STUDY

Based on the findings and hypotheses from our qualitative study

(detailed above, in §3), we conducted a quantitative study to explore

differences between the two CD workflows (RQ2).

4.1 Methods

Projects selection. From the container list in Docker Store, we

collected basic information for all containers listed on or before

July 2017. Our survey responses show that the two widely used

CD workflows are DHW and CIW (§3.3); we selected projects that

used only those two workflows. For projects using CIW, we limited

our study to two cloud-based CI platforms, Travis CI and CircleCI,

since in the Docker Hub documentation and in our survey, we

found these to be among the most popular three; the third, Jenkins,

runs locally and thus has no publicly-available data or API. We call

projects that use the DH workflow DH projects, those that use the

Travis CI workflow Travis projects, and those that use the CircleCI

workflow Circle projects. We identified DH projects by checking

for the presence of the string “is_automated” through the Docker

Hub API (True means the project has auto-builds); this yielded 500

DH projects. For Travis and Circle projects, we identified them

by checking the Docker-enabled deployment settings [12, 13], e.g.,

“docker push” and “docker build”, in their “.travis.yml” or
“circle.yml” configuration files; this yielded 282 Travis projects

and 343 Circle projects; each of them only used one type of CD

workflow in their history.

Data collection and filtering. Out data collection involved min-

ing three types of sources: (1) Docker Hub data, i.e., Docker Hub

builds, using the Docker Hub API; (2) GitHub data, i.e., commits

and git logs of Dockerfile, using the GitHub API; and (3) CI data, i.e.,

CI builds, using the Travis CI and CircleCI APIs. For CI builds, the

main work done by the CI tools is integration testing, so we parsed

the CI build scripts8 to distinguish between deployment builds

(the aim of this CI build is to deploy images) and general test builds.

We only consider deployment builds in our study. Then, we filtered

out projects with less than 10 successful builds, as these might indi-

cate experiments with the infrastructure rather than more serious

CD practice. After this filtering, we obtained our final set of 855

projects for the quantitative study, 428 of them DH projects, 236

Circle projects, and 191 Travis projects.

In total, our dataset contains 133,593 image builds. Among them,

39,094 (29.3%) are Docker Hub builds, 30,990 (23.2%) are Travis

CI builds and 63,509 (47.5%) are CircleCI builds. Table 6 presents

aggregate descriptive statistics over the 855 projects.

Regression analysis. To test our hypotheses, we built four mixed-

effects linear regression models (packages lme4 and lmerTest in
R) with the same random-effect term for the base image. The base

images specified in the Dockerfile (defined in the FROM instruction)

can give a first indication of what it is that the projects use Docker

for [17]. Every Docker image starts from a base image, e.g., Ubuntu

base image. So we expected that the base image has an important

effect on the image build process, especially the build latency. We

captured the base image information by extracting its name from the

specification, i.e., a tuple of the form namespace/name(:version).

8Check if the script has “docker build” and “docker push” commands.

Table 6: Aggregate statistics of the 855 projects.

Group Statistic Mean St. Dev. Min Median Max

DH projects
#Total builds 91.3 155.7 11 30 1,000
#Successful builds 80.5 144.4 10 25 942
#Errored builds 10.9 43.1 0 3 783

Travis projects
#Total builds 162.3 341.5 12 51 3,366
#Successful builds 121.8 270.1 10 42 2,799
#Errored builds 40.4 82.8 0 12 567

Circle projects
#Total builds 269.1 790.8 14 63 7,506
#Successful builds 172.3 506.3 10 34 5,494
#Errored builds 96.9 363.8 1 31 4,133

The random effect allows us to avoid modeling each base image

separately, which would use up degrees of freedom unnecessarily,

but still capture base image variability in the response. All other

variables were modeled as fixed effects. We divide the build data of

each project into different stages, in 30-day windows.

The following outcomes, or dependent variables, were observed

during those time-windows:
• nSuccessBuilds: number of successful builds per time window, as a

proxy for release frequency.

• nErrorBuilds: number of errored builds per time window, as a proxy

for build results.

• nDockerfileChanges: number of Dockerfile changes per time window,

as a proxy for configuration stability of builds.

• avgBuildLatency: mean latency of successful builds per time window,

as a proxy for build speed. Build latency is the time duration from build

start to end, in minutes.

Our independent variables come from two covariate areas: global

(or aggregate level) and local (or time-window level):
• totalCommits and totalBuilds: total number of commits and total

number of image builds in the project’s history, as a proxy for project

size/activity.

• ageAtCD: project age at the time of adopting CD, in days, computed

since the earliest recorded image build.

• workflow: different types of CD workflows, we distinguished DH work-

flow, Travis CI workflow, and CircleCI workflow. We used effect cod-

ing [26] to set the contrasts of this three-way factor, i.e., comparing each

level to the grand mean of all three levels.

• timeFlag: label of the time window, in months, computed since the

earliest image build.

• nLinesOfDockerfile: number of lines of Dockerfile per time window.

We removed the blank lines and comments.

• nIssuesOfDockerfile: number of quality issues of the Dockerfile per

time window, computed by Dockerfile Linter [17, 37].

In our models, where necessary we log-transformed dependent

variables to stabilize their variance and reduce heteroscedastic-

ity [19]. We also removed the top 1% of the data for highly-skewed

variables to control outliers and improve model robustness, in line

with best practices [48]. The variance inflation factors, which mea-

sure multicollinearity of the set of predictors in our models, were

safe, below 3. For each model variable, we report its coefficients,

standard error, significance level, and sum of squares (via ANOVA).

Because each coefficient in the regression amounts to a hypothesis

test, we employ multiple hypothesis correction over all coefficient

results, to correct for false positives, using the Benjamini-Hochberg

step-down procedure [5]. We consider the such corrected coeffi-

cients noteworthy if they were statistically significant at p<0.05.
Model fit was evaluated using a marginal (R2m ) and a conditional

(R2c ) coefficient of determination for generalized mixed-effects mod-

els [33, 44]. R2m describes the proportion of variance explained by

301



ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yang Zhang, Bogdan Vasilescu, Huaimin Wang, and Vladimir Filkov

the fixed effects alone, and R2c describes the proportion of variance

explained by the fixed and random effects together.

4.2 Results

Difference in release frequency. First, we examined the release

frequency in terms of the number of successful builds per 30-day

time-window. Table 7 shows the results of the release frequency

model (Model-1). The fixed-effects part of the model explained

R2m=0.28 of the deviance. A considerable amount of variability

is explained by the random effect (R2c=0.43), i.e., base image, not

explicitly modeled by our fixed effects.

Among the fixed effects, as expected, totalCommits and total-

Builds have significant, positive effects, together explaining 64% of

the variance. Thus, big or active projects may associate with higher

release frequency. We also note that timeFlag has a significant,

negative effect on release frequency (24% of the variance explained).

This indicates that release frequency tends to decrease over time,

holding all other variables constant, which offers support for H1.

Compared to the overall mean across all workflows, the DH work-

flow has a significant negative effect on release frequency (11% of

the variance explained), while the Travis CI and CircleCI work-

flows have significant positive effects. Holding all other variables

constant, DHW tends to have lower release frequency than CIW.

This is consistent with H6. Thus,

Release frequency tends to decrease over time. But DHW tends

to have lower release frequency than CIW.

Difference in build results. Next, we used the number of errored

builds to compare the workflows. Table 8 shows the summary of

the build results regression model (Model-2). The fixed-effects part

of the model explained R2m=0.21 of the deviance, for a total R2c=0.27
with the random effect.

Among the model results, totalCommits and totalBuilds have

a significant positive effect,9 but they explain different proportions

of variance (40% vs 4%), consistent with more code may bring more

errors to the build. timeFlag has a significant negative effect (12%

of the variance explained). Thus, the number of errored builds tends

to become smaller over time. Compared to the overall mean of three

workflows, the DHworkflowhas a significant negative effect (37% of

the variance explained).While the Travis CI and CircleCI workflows

have significant positive effects on the outcome. This indicates that

compared to DHW, CIW is associated with more errors in the

builds, holding all other variables constant; this is consistent with

H4. Thus,

CIW tends to have more errored image builds than DHW.

Difference in build configuration stability. We next used the

number of Dockerfile changes per 30-day time-windows to com-

pare the build configuration stability between the workflows; thus,

higher # changes indicates lower stability. Table 9 shows the con-

figuration stability model (Model-3) summary. The fixed-effects

explained R2m=0.07 of the deviance; with the random effect the

model explained R2c=0.13 of the deviance, and this was our poorest

fitting model.

9Note that in this model, “positive” effect means more errored builds and “negative”
effect means fewer errored builds.

Table 7: Release frequency model. The response is

log(nSuccessBuild). R2m=0.28, R2c=0.43.

Coeffs (Error) Sum Sq.

(Intercept) 0.3631 (0.0398)***
totalCommits 0.4041 (0.0202)*** 265.84***
ageAtCD -0.0602 (0.0156)*** 9.89***
totalBuilds 0.4625 (0.0160)*** 551.21***
timeFlag -0.0385 (0.0018)*** 306.15***
nIssuesOfDockerfile -0.0229 (0.0142) 1.72
nLinesOfDockerfile -0.0359 (0.0138)* 4.44**
workflow=DH -0.3244 (0.0219)*** 145.76***
workflow=Travis CI 0.1922 (0.0228)***
workflow=CircleCI 0.1322 (0.0213)***

***p < 0.001, **p < 0.01, *p < 0.05

Table 8: Build results model. The response is

log(nErrorBuild). R2m=0.21, R2c=0.27.

Coeffs (Error) Sum Sq.

(Intercept) 0.0806 (0.0382)*
totalCommits 0.3754 (0.0241)*** 184.56***
ageAtCD -0.1426 (0.0227)*** 30.21***
totalBuilds 0.1135 (0.0238)*** 17.32***
timeFlag -0.0243 (0.0028)*** 56.03***
nIssuesOfDockerfile -0.0315 (0.0209) 1.74
nLinesOfDockerfile -0.0058 (0.0210) 0.06
workflow=DH -0.4566 (0.0332)*** 169.40***
workflow=Travis CI 0.1293 (0.0298)***
workflow=CircleCI 0.3273 (0.0271)***

***p < 0.001, **p < 0.01, *p < 0.05

Table 9: Configuration stability model. The response is

log(nDockerfileChanges). R2m=0.07, R2c=0.13.

Coeffs (Error) Sum Sq.

(Intercept) 0.2257 (0.0401)***
totalCommits 0.1193 (0.0235)*** 23.11***
ageAtCD -0.0845 (0.0253)** 9.97***
totalBuilds -0.0027 (0.0222) 0.01
timeFlag -0.0346 (0.0035)*** 87.40***
nIssuesOfDockerfile 0.0479 (0.0235) 3.72*
nLinesOfDockerfile 0.0775 (0.0240)** 9.35**
workflow=DH -0.1668 (0.0326)*** 27.93***
workflow=Travis CI 0.0350 (0.0368)
workflow=CircleCI 0.1318 (0.0331)***

***p < 0.001, **p < 0.01, *p < 0.05

timeFlag has a significant negative effect, accounting for 54%

of the variance explained. Holding all other variables constant, it

indicates that the build configuration tends to become more stable

(i.e., have fewer changes) over time; this is consistent with H3.

Compared to the overall mean of three workflows, the DHworkflow

has a significant negative effect (17% of the variance explained), but

the Travis CI workflow has no significant difference; the CircleCI

workflow has a significant positive effect. This is evidence that CIW

may have lower Dockerfile stability than DHW, holding all other

variables constant. Hence, this is consistent with H7.

Container configuration stability tends to increase over time. But

CIW tends to have lower Dockerfile stability than DHW.

Difference in build latency. Finally, we examined build latency.

Table 10 shows the build latency model (Model-4) result. The frac-

tion of total deviance explained by the fixed-effects part of themodel

is R2m=0.20. A considerable amount of variability is explained by

the random effect (R2c=0.57). This is consistent with our description

in §4.1, of the strong effect the base image latency may have on the

total build latency.

302



One Size Does Not Fit All: An Empirical Study of Containerized ... ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 10: Build latency model, The response is

log(avgBuildLatency). R2m=0.20, R2c=0.57.

Coeffs (Error) Sum Sq.

(Intercept) -0.1974 (0.0544)***
totalCommits 0.1551 (0.0170)*** 44.56***
ageAtCD 0.0139 (0.0142) 0.52
totalBuilds 0.2023 (0.0148)*** 99.75***
timeFlag 0.0110 (0.0016)*** 24.39***
nIssuesOfDockerfile 0.0387 (0.0131)** 4.70**
nLinesOfDockerfile 0.1381 (0.0127)*** 63.07***
workflow=DH 0.4336 (0.0204)*** 245.90***
workflow=Travis CI -0.2891 (0.0209)***
workflow=CircleCI -0.1445 (0.0196)***

***p < 0.001, **p < 0.01, *p < 0.05

As expected, more lines in a Dockerfile (nLinesOfDockerfile)

are associated with longer build latency (13% of the variance ex-

plained). timeFlag has a small, significant positive effect (5% of the

variance explained), meaning build latency tends to increase over

time, holding other variables constant; this is consistent with H2.

Compared to the overall mean across all workflows, the DH work-

flow has a strong, positive effect (51% of the variance explained),

and the Travis CI and CircleCI workflows have significant negative

effects. This means that DHW tends to have longer build latency

than CIW, holding all other variables constant, which is contrary

to our expectation. So, H5 is rejected.
10

Build latency tends to increase slightly over time. Interestingly,

DHW tends to have longer build latency than CIW.

Differences among CI workflows. From our models, we find

that usage of CIW or DHW associate with significant differences

in outcomes, consistent with our hypotheses. But with respect to

errored builds and build latency, we also find differences between

the Travis CI and CircleCI workflows. This indicates that different

CI tools may perform the same or similar role, but be associated

with different effects. So H8 is rejected. Thus,

DHW and CIW are significantly different. Using different CI tools

can also associate with different outcomes.

5 DISCUSSION

Here we discuss the practical differences and the trade-offs between

the DH workflow (DHW) and CI workflows (CIWs), followed by

the practice implications.

5.1 Practical Differences

We recapitulate the practical differences between DHW and CIW

based on their support for CD automation and Docker, build en-

vironment, as well as developer experience. These recapitulations

allowed us to develop a deeper understanding of our survey and

quantitative study results.

Support for automated testing. In CIW, CI tools set up “hooks”

with GitHub to automatically run tests (typically unit and integra-

tion) at specified times. By default, these are set up to run after a

pull request is created or when code is pushed to GitHub. DHW has

10Some developers have posted about the build latency problem of Docker Hub auto-
builds on the Docker forum (https://forums.docker.com/t/why-does-it-take-so-long-
for-the-docker-hub-automated-builds-to-upload-the-built-image). Some in our survey
are ok with it. R23 said, “The latency and build times are totally okay due to the fact
that it’s free. I would have a different opinion if I paid for the same service though”.

a complementary automated testing tool for deployment images

(auto-test) [28], provided by Docker Hub. Before using auto-test,

a docker-compose.test.yml automated test file must be set up.

This file defines a sut service that lists the tests to be run and it

should be located in the same directory that contains the Dockerfile.

Since the docker-compose.test.yml is a standard Compose file,

developers could also just invoke Compose in the CI configuration

file to run those tests, which implies CIW may be more powerful.

Support for Docker and Docker tools. DHW, naturally, has bet-

ter support for Docker and Docker tools than CIW, since Docker

Hub itself is a cloud-based service provided by Docker. In addi-

tion, CI tools differ in the amount of Docker support they pro-

vide. Docker version support provided in Travis CI is more re-

cent and more diverse than that in CircleCI. Travis CI develop-

ers can manually upgrade Docker to the latest version by updat-

ing .travis.yml [10], whereas CircleCI currently supports only 3

fixed Docker versions [14]. Also, we found that Travis CI has some

Docker tools pre-installed, e.g., the Docker Compose tool [11]. In

CircleCI, developers need to install and configure this tool in their

container in order to use it [15].

Build environment. As reported on the Docker forum [24], the

current limits on Docker Hub auto-builds are 1 CPU and 2 GB RAM,

which in practice means potential latency problems for large builds.

On the other hand, Travis CI and CircleCI both provide 2 CPUs and

larger RAM limits (4 GB and 8 GB) for the build environment [9, 16].

We found latency to be an issue in Docker Hub in our survey and

quantitative study.

Developer work experience. In our survey, we found that the

average OSS work experience of respondents who use DHW is

7.8 years (median 6), while for respondents who use CIW it is 8.8

years (median 7). While CIW users seem to have one additional

year of OSS experience, the difference is not statistically significant

(Wilcoxon test; p=0.42). On the other hand, the average CI/CD work

experience of DHW respondents is 3.6 years (median 3), and of CIW

respondents it is 4.5 years (median 4). The statistical test shows that

this difference is significant (Wilcoxon test; p=0.04). So, in practice

this may mean that the use/implementation of CIW associates with

more developer CI/CD experience than DHW.

5.2 Trade-Offs between CDWorkflows

Our survey and data analysis revealed that when choosing between

CIW and DHW one may have to trade some features for others and

that it is unlikely that one workflow will fit all:

Higher configurability (CIW) vs. Higher simplicity (DHW)

(see M7, B1, N2, N6, Model-3 and §5.1). Highly configurable work-

flow means also one that is harder to use due to its complexity.

On the other hand, simplicity means higher build configuration

stability, but may also mean less control and lower flexibility.

Higher performance (CIW) vs. Diverse needs (DHW) (see N1,

B2, B3, B4, Model-1, Model-4 and §5.1). Specific requirements (e.g.,

different Docker versions) may bring about lower performance. But

higher performance may not meet more diverse needs.

Higher reliability (CIW) vs. Lower maintenance (DHW) (see

M3, M5, M8, N3, B5, Model-2 and §5.1). More testing means higher

reliability, but also more errored builds, i.e., more maintenance.

303



ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yang Zhang, Bogdan Vasilescu, Huaimin Wang, and Vladimir Filkov

Higher scalability (CIW) vs. Lower experience (DHW) (see

N2, N5, B7 and §5.1). Higher scalability means that more tools or

services can be integrated and do not strongly limit the CD process

(e.g., build speed) in a project, even if the image grows in size and

complexity. But CIW may require more experienced developers.

5.3 Implications

For researchers. Our studies provide a rich resource of initial ideas

for further study. Our survey showed that 45.8% of the respondents

have changed from one to another CD workflows (§3.5). Examining

the costs and benefits that arise from switching CD workflows

may point to best practices for developers needing to change their

solutions. Hence, our study motivates future work to explore the

CD workflow evolution.

We also found that developers have a choice of different CI tools

(§3.3), and that using different CI tools associates with different out-

comes (§4.2). Therefore, researchers should investigate the barriers

and benefits developers face when using particular CI tools.

Our quantitative study mostly focused on comparing CD out-

comes between DHW and CIW (§4). How the two CD workflows

differ in other dimensions should be further empirically evaluated.

E.g., we have found in our data, only anecdotally, that some types

of projects may gravitate toward one or the other of the workflows.

With much more data and careful project classification along differ-

ent dimensions, some patterns may become apparent. Our findings

motivate the need for collecting more empirical evidences that help

developers, who wish to reduce complexity and improve perfor-

mance, to choose appropriate CD tools and establish CD workflow

without arbitrary decisions.

For developers. Our study shows that developers face trade-offs

when choosing different CD workflows (§5.2). A direct implication

is that developers should not only consider their own experiences

and needs, but also consider the different CD support in the CD

workflows. E.g., less experienced developers may benefit more from

using DHW instead of CIW, because DHW has higher simplicity

and lower maintenance cost. More experienced developers may

instead benefit from CIW, which can bring higher configurability

and performance. Hence, there is a need for a list of “bespoke CD

best practices” for developers with different experiences and needs.

Our quantitative studies revealed that Dockerfile configuration

details, e.g., base image, have important effects on the CD workflow

outcomes (§4.2). Developers should select appropriate base image

and instructions. Also, developers should simplify their Dockerfile

content and optimize the image structures, i.e., image layers and

instruction orders. Therefore, the issue of how to manage and help

developers configure the best Dockerfile needs to be addressed.

For service providers. Based on the trade-offs developers face

(§5.2), there are two suggestions for service providers, one is simpli-

fying the configuration complexity, to lower the initiation obstacles

for more inexperienced developers. The other is improving their

support for CD automation, e.g., integrating more powerful Docker

tools and providing more virtual machine environments.

For tool builders. Our respondents expressed their needs for build

testing and failure logging (N3 and N7). Hence, tool builders may

look into creating modern tools that enhance build testing and in-

tegrate with different workflows. Also, developers could use more

sophisticated (e.g., social coding integrated/enabled) tools that man-

age and analyze logs of build failures.

6 THREATS TO VALIDITY

Internal validity. Surveys can be affected by bias and inaccurate

responses, whichmay be intentional or unintentional. To ameliorate

this threat, we designed and delivered our survey by following es-

tablished guidelines [51, 61]. Most of our questions are open-ended

so that participants can freely fill their own answers, and during

our manual analysis, we carefully removed unrelated answers.

In the quantitative study, we controlled for the build complexity

with the number of lines in the Dockerfile, andwe set the base image

as a random-effect. But the Dockerfile may have many different

instructions inside, which may cause some bias, although in our

manual examination we did not find evidence for it. We note that

our models’ fit to the data is around 25% of the deviance, and lower

for the build configuration stability model (Model-3). That is not

necessarily a problem for our purposes as we are only interested in

the coefficients’ effect and not relying on the models to explain the

full phenomena, which would require many more variables, and is

beyond the scope of this work.

External validity. We only considered Docker repositories that

are on GitHub. Thus, our findings cannot be assured to generalize

to projects hosted on other services, e.g., Bitbucket and GitLab,

although there is no inherent reason why they would be biased.

Moreover, we only analyzed open source software. CD workflow

and its influence might be different in closed source environments.

Finally, we conducted our study on the Docker-enabled CD work-

flow. We cannot assume that our findings generalize to other CD

workflows that are not using Docker.

7 CONCLUSION

We conducted the first large-scale study of Docker-enabled CD

workflows on Docker Hub/GitHub to shed light on the developers’

experiences and expectations when using CD. Our mixed qualita-

tive and quantitative approach enabled us to tease out categories

of developers’ opinions on CD and the two workflows, as well as

test hypotheses arising from them using large data sets. Most of

our survey findings were confirmed in the data, but some were

not, emphasizing the power of mixed methods to produce holistic

findings. Our findings indicate that developers face trade-offs when

choosing between different CD workflows with respect to config-

urability, simplicity, requirements, performance, stability, developer

experience, etc., and we were able to distill some implications for

different stakeholders.

ACKNOWLEDGMENTS

The bulk of this work was produced while the first author was visit-

ing DECAL at UC Davis. We thank members of DECAL, especially

Prof. Devanbu, for their comments and directions on this research.

We also thank the 168 survey respondents for their valuable an-

swers and the anonymous reviewers for their insightful comments

on earlier versions of this paper. This work was supported by the

NSF (Grants No. 1717370 and 1717415), the National Natural Sci-

ence Foundation of China (Grant No. 61502512 and 61432020), and

China Scholarship Council.

304



One Size Does Not Fit All: An Empirical Study of Containerized ... ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

REFERENCES
[1] Charles Anderson. 2015. Docker [software engineering]. IEEE Software 32, 3

(2015), 102–c3.
[2] Valentina Armenise. 2015. Continuous delivery with Jenkins: Jenkins solutions to

implement continuous delivery. In International Workshop on Release Engineering
(RELENG). IEEE, 24–27.

[3] Len Bass, Ingo Weber, and Liming Zhu. 2015. DevOps: A Software Architect’s
Perspective. Addison-Wesley Professional.

[4] Robert Benefield. 2009. Agile deployment: Lean service management and deploy-
ment strategies for the SaaS enterprise. In Hawaii International Conference on
System Sciences (HICSS). IEEE, 1–5.

[5] Yoav Benjamini and Yosef Hochberg. 1995. Controlling the false discovery rate: a
practical and powerful approach to multiple testing. Journal of the royal statistical
society. Series B (Methodological) (1995), 289–300.

[6] David Bernstein. 2014. Containers and cloud: From lxc to docker to kubernetes.
IEEE Cloud Computing 1, 3 (2014), 81–84.

[7] Carl Boettiger. 2015. An introduction to Docker for reproducible research. ACM
SIGOPS Operating Systems Review 49, 1 (2015), 71–79.

[8] Lianping Chen. 2015. Continuous delivery: Huge benefits, but challenges too.
IEEE Software 32, 2 (2015), 50–54.

[9] Travis CI. 2018. Build Environment Overview. Retrieved July 17, 2018 from
https://docs.travis-ci.com/user/reference/overview/

[10] Travis CI. 2018. Installing a newer Docker version. Retrieved July 17, 2018 from
https://docs.travis-ci.com/user/docker/#Installing-a-newer-Docker-version

[11] Travis CI. 2018. Using Docker Compose. Retrieved July 17, 2018 from https:
//docs.travis-ci.com/user/docker/#Using-Docker-Compose

[12] Travis CI. 2018. Using Docker in Builds. Retrieved July 17, 2018 from https:
//docs.travis-ci.com/user/docker/

[13] CircleCI. 2018. Continuous Integration and Delivery with Docker. Retrieved
July 17, 2018 from https://circleci.com/docs/1.0/docker/

[14] CircleCI. 2018. Docker version. Retrieved July 17, 2018 from https://circleci.
com/docs/2.0/building-docker-images/#docker-version

[15] CircleCI. 2018. Installing and Using docker-compose. Retrieved July 17, 2018
from https://circleci.com/docs/2.0/docker-compose/

[16] CircleCI. 2018. Remote Docker Environment. Retrieved July 17, 2018 from
https://circleci.com/docs/2.0/building-docker-images/#specifications

[17] Jürgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zumberi,
and Harald C Gall. 2017. An empirical analysis of the Docker container ecosystem
on GitHub. In International Conference on Mining Software Repositories (MSR).
IEEE Press, 323–333.

[18] Gerry Gerard Claps, Richard Berntsson Svensson, and Aybüke Aurum. 2015. On
the journey to continuous deployment: Technical and social challenges along
the way. Information and Software Technology 57 (2015), 21–31.

[19] Jacob Cohen, Patricia Cohen, Stephen G West, and Leona S Aiken. 2013. Applied
multiple regression/correlation analysis for the behavioral sciences. Routledge.

[20] T. Combe, A. Martin, and R. Di Pietro. 2016. To Docker or Not to Docker: A
Security Perspective. IEEE Cloud Computing 3, 5 (2016), 54–62.

[21] Juliet Corbin and Anselm Strauss. 1990. Grounded theory research: Procedures,
canons and evaluative criteria. Zeitschrift für Soziologie 19, 6 (1990), 418–427.

[22] Rajdeep Dua, A Reddy Raja, and Dharmesh Kakadia. 2014. Virtualization vs
containerization to support paas. In International Conference on Cloud Engineering
(IC2E). IEEE, 610–614.

[23] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. 2015. An updated
performance comparison of virtual machines and linux containers. In Interna-
tional Symposium On Performance Analysis of Systems and Software (ISPASS).
IEEE, 171–172.

[24] Docker forum. 2015. Automated Build resource restrictions. Retrieved July 17,
2018 from https://forums.docker.com/t/automated-build-resource-restrictions/
1413/2

[25] Martin Fowler and Matthew Foemmel. 2006. Continuous integration. Thought-
Works http://www.thoughtworks.com/Continuous Integration.pdf 122 (2006).

[26] Alkharusi H. 2012. Categorical variables in regression analysis: A comparison of
dummy and effect coding. International Journal of Education 4, 2 (2012), 202–210.

[27] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny
Dig. 2017. Trade-Offs in Continuous Integration: Assurance, Security, and Flexi-
bility. In International Symposium on Foundations of Software Engineering (FSE).
ACM, 197–207.

[28] Docker Hub. 2018. Automated repository tests. Retrieved July 17, 2018 from
https://docs.docker.com/docker-cloud/builds/automated-testing/

[29] Docker Hub. 2018. Configure automated builds on Docker Hub. Retrieved July
17, 2018 from https://docs.docker.com/docker-hub/builds/

[30] Jez Humble. 2018. Continuous Delivery. Retrieved July 17, 2018 from https:
//continuousdelivery.com/

[31] Jez Humble andDavid Farley. 2010. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Pearson Education.

[32] Jez Humble, Chris Read, and Dan North. 2006. The deployment production line.
In Agile Conference (AGILE). IEEE, 6–pp.

[33] Paul CD Johnson. 2014. Extension of Nakagawa & Schielzeth’s R2GLMM to
random slopes models. Methods in Ecology and Evolution 5, 9 (2014), 944–946.

[34] Sebastian Klepper, Stephan Krusche, Sebastian Peters, Bernd Bruegge, and Lukas
Alperowitz. 2015. Introducing continuous delivery of mobile apps in a corpo-
rate environment: A case study. In International Workshop on Rapid Continuous
Software Engineering (RCoSE). IEEE, 5–11.

[35] Stephan Krusche and Lukas Alperowitz. 2014. Introduction of continuous deliv-
ery in multi-customer project courses. In International Conference on Software
Engineering (ICSE). ACM, 335–343.

[36] M. Leppanen, S. Makinen, M. Pagels, V. P. Eloranta, J. Itkonen, M. V. Mantyla, and
T. Mannisto. 2015. The highways and country roads to continuous deployment.
IEEE Software 32, 2 (2015), 64–72.

[37] Linter. 2018. Dockerfile Linter. Retrieved July 17, 2018 from http://hadolint.
lukasmartinelli.ch/

[38] Mika VMantyla, Foutse Khomh, BramAdams, Emelie Engstrom, and Kai Petersen.
2013. On rapid releases and software testing. In International Conference on
Software Maintenance (ICSM). IEEE, 20–29.

[39] AR Manu, Jitendra Kumar Patel, Shakil Akhtar, VK Agrawal, and KN Bala Subra-
manya Murthy. 2016. Docker container security via heuristics-based multilateral
security-conceptual and pragmatic study. In International Conference on Circuit,
Power and Computing Technologies (ICCPCT). IEEE, 1–14.

[40] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux Journal 2014, 239 (2014), 2.

[41] Mathias Meyer. 2014. Continuous integration and its tools. IEEE Software 31, 3
(2014), 14–16.

[42] Adrian Mouat. 2015. Using Docker: Developing and Deploying Software with
Containers. O’Reilly Media, Inc.

[43] Preeth E N, F. J. P. Mulerickal, B. Paul, and Y. Sastri. 2015. Evaluation of Docker
containers based on hardware utilization. In International Conference on Control
Communication Computing India (ICCC). 697–700.

[44] Shinichi Nakagawa and Holger Schielzeth. 2013. A general and simple method for
obtaining R2 from generalized linear mixed-effects models. Methods in Ecology
and Evolution 4, 2 (2013), 133–142.

[45] Steve Neely and Steve Stolt. 2013. Continuous delivery? easy! just change ev-
erything (well, maybe it is not that easy). In Agile Conference (AGILE). IEEE,
121–128.

[46] Helena Olsson Holmström, Hiva Alahyari, and Jan Bosch. 2012. Climbing the
"Stairway to Heaven" A multiple-case study exploring barriers in the transition
from agile development towards continuous deployment of software. In Euromicro
Conference on Software Engineering and Advanced Applications. Ieee Computer
Soc, 392–399.

[47] Chris Parnin, Eric Helms, Chris Atlee, Harley Boughton, Mark Ghattas, Andy
Glover, James Holman, John Micco, Brendan Murphy, Tony Savor, et al. 2017.
The top 10 adages in continuous deployment. IEEE Software 34, 3 (2017), 86–95.

[48] Jagdish K Patel, CH Kapadia, and Donald Bruce Owen. 1976. Handbook of
statistical distributions. M. Dekker.

[49] Perforce. 2017. Continuous Delivery: The NewNormal for Software Development.
Retrieved July 17, 2018 from https://www.perforce.com/sites/default/files/files/
2017-09/continuous-delivery-report.pdf

[50] Portworx. 2017. 2017 Annual Container Adoption Survey: Huge Growth
in Containers. Retrieved July 17, 2018 from https://portworx.com/
2017-container-adoption-survey/

[51] Teade Punter, Marcus Ciolkowski, Bernd Freimut, and Isabel John. 2003. Con-
ducting on-line surveys in software engineering. In International Symposium on
Empirical Software Engineering (ISESE). IEEE, 80–88.

[52] Puppet. 2017. 2017 State of DevOps Report. Retrieved July 17, 2018 from
https://puppet.com/resources/whitepaper/state-of-devops-report

[53] GitHub report. 2017. GitHub welcomes all CI tools. Retrieved July 17, 2018 from
https://blog.github.com/2017-11-07-github-welcomes-all-ci-tools

[54] Pilar Rodríguez, Alireza Haghighatkhah, Lucy Ellen Lwakatare, Susanna Teppola,
Tanja Suomalainen, Juho Eskeli, Teemu Karvonen, Pasi Kuvaja, June M Verner,
and Markku Oivo. 2017. Continuous deployment of software intensive products
and services: A systematic mapping study. Journal of Systems and Software 123
(2017), 263–291.

[55] Chuck Rossi, Elisa Shibley, Shi Su, Kent Beck, Tony Savor, and Michael Stumm.
2016. Continuous deployment of mobile software at facebook (showcase). In
International Symposium on Foundations of Software Engineering (FSE). ACM,
12–23.

[56] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie Williams, Kent Beck, and
Michael Stumm. 2016. Continuous deployment at Facebook and OANDA. In
International Conference on Software Engineering (ICSE). ACM, 21–30.

[57] Gerald Schermann, Jürgen Cito, Philipp Leitner, Uwe Zdun, and Harald Gall.
2016. An empirical study on principles and practices of continuous delivery and
deployment. Technical Report. PeerJ Preprints.

[58] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. 2017. Continuous
Integration, Delivery and Deployment: A Systematic Review on Approaches,
Tools, Challenges and Practices. IEEE Access 5 (2017), 3909–3943.

305



ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Yang Zhang, Bogdan Vasilescu, Huaimin Wang, and Vladimir Filkov

[59] Rui Shu, Xiaohui Gu, and William Enck. 2017. A Study of Security Vulnerabilities
on Docker Hub. In International Conference on Data and Application Security and
Privacy. ACM, 269–280.

[60] John Ferguson Smart. 2011. Jenkins: The Definitive Guide: Continuous Integration
for the Masses. O’Reilly.

[61] Edward Smith, Robert Loftin, Emerson Murphy-Hill, Christian Bird, and Thomas
Zimmermann. 2013. Improving developer participation rates in surveys. In
International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE). IEEE, 89–92.

[62] Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano, Philipp
Leitner, Andy Zaidman, Massimiliano Di Penta, and Sebastiano Panichella. 2017.
A Tale of CI Build Failures: an Open Source and a Financial Organization Perspec-
tive. In International Conference on Software Maintenance and Evolution (ICSME).
IEEE, 183–193.

[63] Carmine Vassallo, Fiorella Zampetti, Daniele Romano, Moritz Beller, Annibale
Panichella, Massimiliano Di Penta, and Andy Zaidman. 2016. Continuous delivery

practices in a large financial organization. In International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 519–528.

[64] DavidWidder, Michael Hilton, Christian Kästner, and Bogdan Vasilescu. 2018. I’m
Leaving You, Travis: A Continuous Integration Breakup Story. In International
Conference on Mining Software Repositories (MSR). ACM, 165–169.

[65] Tianyin Xu and Darko Marinov. 2018. Mining Container Image Repositories
— MSR for Software Configuration and Beyond. In International Conference on
Software Engineering: New Ideas and Emerging Results (ICSE-NIER). ACM, 49–52.

[66] Yangyang Zhao, Alexander Serebrenik, Yuming Zhou, Vladimir Filkov, and Bog-
dan Vasilescu. 2017. The impact of continuous integration on other software
development practices: A large-scale empirical study. In International Conference
on Automated Software Engineering (ASE). IEEE, 60–71.

306


