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Abstract Open Source Software projects are communities in which people “learn the
ropes” from each other. The social and technical activities of developers evolve together,
and as they link to each other they get organized in a network of changing socio-technical
connections. Traces of those activities, or behaviors, are typically visible to all, in project
repositories and through communication between them. Thus, in principle it may be possible
to study those traces to tell which of the observable socio-technical behaviors of developers
in these projects are responsible for the forming of persistent links between them. It may
also be possible to tell the extent to which links participate in the spread of potential behav-
ioral influences. Since OSS projects change in both social and technical activity over time,
static approaches, that either ignore time or simplify it to a few slices, are frequently inade-
quate to study these networks. On the other hand, ad-hoc dynamic approaches are often only
loosely supported by theory and can yield misleading findings. Here we adapt the stochas-
tic actor-oriented models from social network analysis. These models enable the study of
the interplay between behavior, influence and network architecture, for dynamic networks,
in a statistically sound way. We apply the stochastic actor-oriented models in case studies
of two Apache Software Foundation projects, and study code ownership and developer pro-
ductivity as behaviors. For those, we find evidence of significant social selection effects
(homophily) in both projects, but in different directions. However, we find no evidence for
the spread (social influence) of either code ownership or developer productivity behaviors
through the networks.
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1 Introduction

Open Source Software (OSS) projects are complex ecosystems of social interactions and
technical activity (Ducheneaut 2005; Scacchi et al. 2006). They can be thought of as over-
lapping social networks of teams of contributors, and technical networks of artifact (code)
dependencies. Figure 1 illustrates the temporal component and ecosystem in which the
OSS social networks change. Complex networks are an appropriate formalism for modeling
them as they can capture emergent properties relevant to software development, like accom-
plishing distributed tasks, team coordination, and social organization (Bird et al. 2008).
Information supplied by various people flows through these socio-technical networks. E.g.,
new code is introduced, existing code is flagged for change, new features are discussed,
and high priority bugs are assigned for debugging. To make sense of it all, a contributor
might socially “link” to a small subset of people, e.g., popular community members, as good
central proxies to understand the dynamics of the system as a whole. One’s social and tech-
nical activities in such a project change with the needs and expectations of tasks currently
in focus, and evolve with the project. To increase their productivity, or quality, one may
also borrow from others’ either code (Mockus 2007), or desirable behavior. E.g., to become
a committer one has to emulate behavior, like patch submission and socialization amount
(Gharehyazie et al. 2013), at levels practiced by the community, so as to establish trust.

Arguably, such linking is done to improve one’s OSS experience. Explicitly or not, social
linking among developers can affect the resulting software quality, which can gain by appro-
priate usage of social linking (Bettenburg and Hassan 2010). Software processes can also be
improved by knowledge and experience reuse, or imitation (Basili and Caldiera 1995). And
productivity, too, can be affected by judiciously establishing collaborations in OSS projects
(Xuan and Filkov 2014). In fact, Software Engineering has benefited from social net-
work analysis methods (Storey et al. 2010; Bettenburg and Hassan 2010), especially in the
field of distributed software development (Madey et al. 2002; Cherry and Robillard 2008;

Fig. 1 Developers socialize through different channels over time, and correspondingly change their social
ties. In addition, developers change their project interests and committing behavior over time. This forms a
complex and dynamic longitudinal ecosystem of social interaction and productivity behavior. In this work,
we consider emails as a communication channel between developers within individual projects
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Hong et al. 2011). However, longitudinal studies of the dynamics of these networks have
mostly been coarse-grained and not in keeping with modern statistical modeling formalisms.
E.g., some studies gather data over a time period, only to reduce their analysis to a single
cross-section (Madey et al. 2002; Bird et al. 2006). Others retain the longitudinal dimension
of their data, but analyze at a relatively coarse-grained level (Hong et al. 2011). Though the
contributions of existing studies are palpable and cannot be ignored, complex and dynamic
social networks such as those found in Open Source Software could greatly benefit from a
more fine-grained analysis approach.

There is a dearth of studies, however, the above ones notwithstanding, that quantify the
initiation of links, and the influence and spread of programmer behavior along the social
network of developers. The culprit, in part, has likely been the absence of large-scale lon-
gitudinal data, which is necessary to provide sufficient variance among the behaviors for
modeling. More critically, appropriate statistical technology that can model longitudinal
behavior over social networks has a high bar to digest and use properly. Without such
methodology results could be misleading. So, how do we evaluate the analogue of the social
phenomenon of making friends, i.e. linking to people we like, and the analogue of emulating
behavior, i.e. mimicking others’ attributes, in OSS socio-technical networks?

Borrowing a page from social network analysis, here we demonstrate how to adapt the
statistical approach of stochastic actor-oriented modeling (SAOM) to study the effects of
social links and neighbors’ behavior on new network link formation and behavior influence
in social networks of OSS developers. This allows us to conveniently test hypotheses within
an environment where behaviors interact and feed into each other over time. To that end,
we give a detailed description of the full pipeline for modeling using SAOMs, aimed at
empirical software engineering practitioners. We illustrate this approach on case studies of
two Apache Software Foundation (ASF) projects: Ant and Axis2/Java, on which we model
three individual behaviors: one’s commit count, high file ownership, and minor contributor
count (or low file ownership), all over time.1 We found that:

1. Modeling OSS temporal network data is intricate. Care must be taken to understand
the networks and the amount of changes between time points, as well as the model-
ing parameters. We provide some guidance, based on our experience for best utilizing
SAOMs in general.

2. The evolution of OSS social networks can be modeled statistically once the above
are understood, illustrating the potential of stochastic actor-oriented modeling to study
complex, time-varying phenomena in software ecosystems.

3. There is either a significant or suggestive positive effect of behavior on network link
formation for all behaviors tested in Axis2/Java, and a significant and negative effect for
all behaviors tested in Ant. We find that there is no network structure influence effect
on behavior evolution (social influence) for all behaviors tested in all projects studied.

The paper is structured as such: Section 2 covers relevant theory and related work; Sec-
tion 3 briefly explains stochastic actor-oriented modeling; Section 4 covers general methods
and advice for using SAOM; Section 5 presents details on applying SAOMs to our data.

1These behaviors have been studied before as important indicators of bugs, socio-technical structure, and
overall software quality (Curtis et al. 1988; Fong Boh et al. 2007; Weyuker et al. 2008; Bird et al. 2011;
Rahman and Devanbu 2011), and are discussed further in Section 5.
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This is followed by a discussion in Section 6 and our conclusions and threats to validity
in Section 7. Data and scripts used in this work can be found at http://web.cs.ucdavis.edu/
∼filkov/software/ASF-Siena/.

2 Theory and Related Work

Open Source Software projects exist and thrive in large part due to their dedicated commu-
nity who feel connected and belonging to a team (Crowston and Howison 2005). A number
of studies have shown that human factors play a crucial role in the quality of software (Bird
et al. 2009, 2011; Cataldo et al. 2006; Nagappan et al. 2008; Pinzger et al. 2008). In addi-
tion, much work has been done in studying software systems through the use of various
social, technical, and socio-technical networks (Madey et al. 2002; Cherry and Robillard
2008; Hong et al. 2011; Meneely et al. 2008; Lopez-Fernandez et al. 2004; De Souza et al.
2005). Bird et al. examined socio-technical networks using classical social network analysis
techniques to predict failure prone components in releases of Windows (Bird et al. 2009).
In addition, Bird et al. studied the email social networks of various OSS projects, finding
that collaborative sub-communities within each project spontaneously arise as the projects
evolve (Bird et al. 2008). A question that has not been explored in a theoretically fundamen-
tal way, at least to our knowledge, is how do social interactions between developers affect
the evolution of the software engineering process and vice-versa?

There has been work done in finding answers to this question, but in a less special-
ized fashion. Xuan et al. presented phenomenological quantitative methods to measure the
effects of social activity on individual work behavior, finding that communication before
and after committing activities plays a role in development of OSS projects (Xuan et al.
2014). Gharehyazie et al. examined email social networks related to various ASF projects
and found that social activity alone can serve as a strong predictor of developer initiation
(Gharehyazie et al. 2013). Meneely et al. used social network measures to analyze the effect
of focus and ownership on security errors, finding that lower focus is associated with more
security errors (Meneely and Williams 2009). Most closely related to our work is the work
of Singh, who studied macro-level properties of developer collaboration networks, finding
that they exhibit small-world properties as those found in “natural” social networks (Singh
2010). Though these works deal explicitly with social interaction between developers, they
all utilize methodologies that differ from what we use here, and have different goals. We are
focused on explicitly modeling the temporal interplay between social ties in the developer
social networks, and their technical behavior while working on the artifacts.

In the domain of health research, social networks have been used to study the spread of
infectious diseases, innovations, knowledge, and other related phenomena (Anderson et al.
1992; Pastor-Satorras and Vespignani 2001; Newman 2002; Barthélemy et al. 2005; Zhang
and Fu 2009; Greenan 2014). Initially, very basic models were used to describe this spread-
ing effect (also called epidemiological processes). Physicists became interested in these
epidemiological processes when it was found that they can be mapped to the bond percola-
tion problem (Cardy and Grassberger 1985). Simple compartmental modelswere developed
to describe these networks, with the main appeal of being described by tractable, closed-
form mathematical formulae (Boccaletti et al. 2006). These simple models have since been
extended far beyond their initial capacity (Shi et al. 2008). However, it is not clear that
the assumptions these simpler models rely on hold in real networks. Examples of these
assumptions are homogeneity in degree distribution, fixed infectiveness time, uncorrelated
probability of transmission between all pairs of individuals, and static network topology.
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These assumptions can be prohibitive or even misleading when studying real networks
(Newman 2002; Barthélemy et al. 2005; Vespignani 2012). An issue of primary importance
in the general study of epidemiological and epidemiological-like processes is the separation
of social influence and social selection (also called contagion and homophily in literature,
respectively). This problem is more succinctly described as an issue of causal inference2

or the reflection problem (Manski 1993); e.g. colloquially, do people become more like
their friends (i.e. causally, through social influence), or do people make friends with those
who are already like them (social selection)? These issues and other criticisms of existing
methodologies have been discussed extensively within the research community (Shalizi and
Thomas 2011; Cohen-Cole and Fletcher 2008a, b; Halliday and Kwak 2009).

Since OSS projects are complex, dynamic systems, the study of their details at fine gran-
ularity (i.e. at the developer level) calls for methods that can elucidate potential confounds,
isolating important factors for software engineering in the presence of complex interactions
(e.g. the potential confounding of degree with transitivity). The stochastic actor-oriented
models of Snijders et al. (Snijders 1996; Snijders and van Duijn 1997) are one such family of
modeling methods. They explicitly model longitudinal network and behavioral data simul-
taneously (i.e. evolving networks and evolving behavior) at the per-node level, avoiding
many limiting assumptions of alternative models of network evolution (Jackson and Rogers
2007; Barabási and Albert 1999; CAD 1976)3 Though well-founded criticisms regarding
some problems, like reflection and causal inference, still exist with stochastic actor-oriented
models, many constraints due to the assumptions of previous (simpler) models are greatly
reduced, increasing flexibility as is necessary to study such complex systems.

Given the technical details of SAOMmodeling, and being motivated by prior work using
social network analysis techniques applied to Software Engineering, we sought to address
applied problems related to social selection and influence in OSS developer social networks
through case studies: (1) to what extent do we find homophily, i.e. linking of people to
others with like behavior, in OSS projects? And (2) can we find evidence for behavioral
influence among the nodes in our networks, i.e. does some technical behavior spread vs.
arise spontaneously as a person spends more time with the project? Figure 2 illustrates this
process graphically.

Next, we present the SAOM formalism and modeling techniques, followed by our
illustration of its use, on cases studies of data from two OSS projects.

3 Stochastic Actor-Oriented Models

Stochastic Actor-Oriented Models (SAOMs) were developed for the analysis of longitudi-
nal social network data, collected by taking two or more “snapshots” (also called “panels”
or “waves”) of a network as it evolves over time (often called a network panel study)
(Ripley et al. 2014). There is an extensive body of work utilizing SAOMs to test hypothe-
ses on network and behavior co-evolution, as well as much work describing its statistical
basis (Snijders 1996, 2001, 2005; Snijders and van Duijn 1997; Snijders et al. 2007, 2010;
Greenan 2014; Steglich et al. 2010). A defining aspect of SAOMs is their focus on the
“actors”, e.g., people, firms, etc. SAOMs model change from the perspective of an actor
within a (potentially) changing network; a major difference compared to other techniques
used for modeling longitudinal network data.

2The problem of causal inference is not limited to the study of epidemiological processes.
3Also, these alternative models generally lack fundamental statistical data fitting ability.
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Fig. 2 Illustration of potential mimicking behavior among developers

Ties between actors are generally directed relationships such as trust or friendship, where
ties go from “ego” (self) to “alter” (other). These models view network evolution as a series
of “choices” by actors to create, maintain, or terminate ties to other actors. “Choice” does
not necessarily imply conscious control; it refers to an actor’s outgoing ties and behavior as
explained by aspects of that particular actor and their context within the network (Snijders
et al. 2010). This does not conform or restrict to any particular belief or theory in the exact
overarching mechanisms of network and behavioral change (Ripley et al. 2014), allowing
researchers to further develop their theories behind the reasons of action (e.g. social selec-
tion vs. influence). This fact is a primary reason behind the usefulness of this method; we
may hypothesize that particular software engineering behaviors are either influential or lend
themselves to homophilous relations, and this methodology allows us to test these hypothe-
ses in the presence of complex, dynamic OSS systems. Since its introduction, SAOMs have
been applied to a wide variety of domains, including the study of selection patterns in school
classrooms (Baerveldt et al. 2010), the evolution of communication networks in high-risk
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social-ecological systems (Berardo 2014), the role of teen drinking behavior in friendship
selection (Cheadle et al. 2013), and the spread of norms among judges in the French court
system (Lazega et al. 2011).

Informally, the model’s objective function describes how likely it is for an actor to change
their local network in a particular way. At each time step, the actors move in a direction that
maximizes their particular objective function, given constraints on current network topol-
ogy, exogenous covariates, endogenous covariates, and random influences. The process is
analogous to behavioral evolution; at each step, an actor can increase their behavior (+1),
decrease their behavior (−1), or keep their behavior the same (±0) (Snijders et al. 2007,
2010; Steglich et al. 2010; Veenstra et al. 2013). The modeled evolution is determined from
(observed) wave to wave using a very large number of ministeps. Each ministep changes the
underlying network state; as a result, the actors are always affecting each other throughout
this evolution (Ripley et al. 2014; Snijders 2014; Zeggelink 1994). This allows the models
to reflect the constant feedback process that exists in network dynamics.

Formally, the mathematical specification of the network objective function has the form

f net
i (x) =

∑

k

βnet
k snet

ik (x) (1)

where f net
i (x) is the value of the network objective function for actor i depending on the

state x of the network. Functions snet
ik (x) are effects based on the network state (e.g. out-

degree), and the βnet
k are parameters to be estimated. The behavioral objective function is

defined analogously, with an additional dependence on behavior value z.

f beh
i (x, z) =

∑

k

βbeh
k sbeh

ik (x, z) (2)

The overall estimation procedure uses repeated simulations of network evolution from
each wave to the next. This provides a large set of networks that “could have” brought the
observed networks from one to the other. The outcome of the simulations is a log-linked
objective function with estimated parameters βnet

k (or βbeh
k ).

4 Modeling OSS Networks With SAOMs

In this work, we primarily address practical matters of implementation and assumptions that
pertain to our work; much more detail can be found in the algorithm descriptions (Snijders
2014) and associated documents (Snijders 1996, 2001, 2005; Snijders and van Duijn 1997;
Snijders et al. 2007, 2010, 2013; Steglich et al. 2010; Schweinberger 2012; Schweinberger
and Snijders 2007; Lospinoso 2010, 2012; Lospinoso et al. 2011) .

SIENA is an R package that implements the SAOM simulation-based fitting procedures
for directed or undirected one-mode networks (Snijders 2001); the evolution of a two-mode
network (Koskinen and Edling 2012); the evolution of an individual behavior; and the co-
evolution of one-mode networks, two-mode networks, and individual behaviors (Steglich
et al. 2010; Snijders et al. 2013). The fourth model type is utilized in this work. In SIENA,
in addition to network data and behavioral data, exogenous covariates may be defined which
are used to guide simulation but are not modeled themselves.

To ensure that the SAOM methodology could be properly applied to our data, we follow
guidelines provided by the creators of SIENA from the official SIENA manual (Ripley
et al. 2014), as well as the SIENA introductory tutorial (Snijders et al. 2010). In addition,
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Table 1 Project descriptive statistics. Average values are per wave

Ant Axis2/Java

Number of Unfiltered Nodes 46 78

Number of Filtered Nodes 44 69

Date Range 7/10/2001 6/21/2005

3/16/2012 3/18/2012

Average # Observed Ties 129 314

Average Link Lifetime (days) 330 120

Wave range modeled 1-7 2-6

we follow advice as given by users and developers of SIENA according to discussions on
the official SIENA user group.4 The assumptions of SAOM relevant to our work are: the
changing network is the outcome of a Markov process; parameter estimates remain constant
in time; network change exists but is not too drastic (described in more detail below); all
nodes are potential network partners; and all nodes are tie senders or tie receivers at all
points in time, unless specified as a “joiner” or a “leaver”.

The assumption of a Markov process has been made in virtually all models for social net-
work dynamics, as it is exceedingly difficult to devise manageable models that do not follow
this assumption (Snijders et al. 2010). The assumption of parameter estimates remaining
constant in time can be relaxed through time-dependent dummy variables. However, the
introduction of these variables can increase model complexity substantially. This topic has
been discussed at length (Lospinoso 2010, 2011).5 The assumption that all nodes are tie
senders or tie receivers at all points in time is very unlikely to affect our results, as few nodes
violated this assumption, and those nodes that did violate this assumption were removed
(described below and in Table 1). Here, we describe how we process our network data to
meet those assumptions.

4.1 SIENA Performance and Practical Application

The SIENA package provides numerous parameters that may be specified to fine-tune the
estimation process. One of the core practical features that SIENA provides is support for
parallel computation. Table 2 shows computation and convergence times for our case study
projects running on 2, 4, 6, and 8 cores, with a step size of 0.02 and 3000 phase 3 iterations
(Snijders 2014). Computation time is the amount of elapsed time to complete one full model
estimation; convergence time is the total elapsed time to run all estimations to convergence,
using prior parameter estimates as initial values. The authors did not run into any issues
with being memory-bounded when estimating models. As shown, the amount of time to
estimate our case study models for Ant slightly increased when moving from 6 to 8 cores,
which merits more study. However, the general trend is a reduction in estimation time.

As the models are stochastic, the number of estimations until convergence will likely vary
between projects, and may vary between full model runs. The length of estimation depends

4http://groups.yahoo.com/groups/stocnet/
5We built separate models for each consecutive wave and estimated parameters for each separate model to test
this assumption. These parameter estimates were then compared across models. There were no significant
departures in these tests to indicate non-constant parameter estimates across time.
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Table 2 Computation times (seconds). Step size set to 0.02, 3000 phase 3 iterations

Computation time Convergence time

Number of cores 2 4 6 8 2 4 6 8

Ant 318.53 246.04 248.52 235.33 2693.43 1429.66 840.13 939.347

Axis2/Java 391.65 252.48 253.77 281.77 10344.92 6665.393 3390.189 1392.62

heavily on both the size and structure of the input data. As shown in Table 1, Ant and
Axis2/Java have a comparable number of nodes, but Axis2/Java experiences more frequent
changes (lower average link lifetime) and has a larger number of ties between nodes, while
having two less modeled waves. Though similar in size, the structure of Axis2/Java is more
varied. This may explain why the estimation for Axis2/Java took much longer than the
estimation for Ant.

Reducing step size will likely increase the amount of time to convergence, but may be
necessary to reach convergence. As referenced in the manual (Ripley et al. 2014), phase 3 is
used to estimate the covariance matrix and matrix of derivatives used to calculate standard
errors. A lower number of phase 3 iterations can result in inaccurate standard errors. The
authors of the package recommend 3000 iterations for “publication quality” standard errors,
but note that this phase takes a lot of computing time.

In addition, one can provide the results of a previous model (on the same data) as initial
values for subsequent model estimations; SIENA provides this functionality out-of-the-box.
When building and exploring models, the authors recommend using this feature as they
found this greatly reduced convergence time in practice.

4.2 Social Interaction Decay

One of the primary obstacles in applying the SAOM method to various types of network
data is that there is often no clear definition of what is an ongoing social relationship. This
is a problem in any type of network data in which the primary form of interaction is through
aggregated contacts. In the social world, friendships (or more generally, social relations)
are created, maintained, and lost. Similarly, knowledge can be gained, maintained, and lost.
However, when using emails as a proxy for social relation or knowledge flow (i.e. informa-
tion exchange between developers), it is unclear how to identify the loss of such a relation.
The problem then is to identify the distribution of relational durations in order to model the
loss of social relations in aggregated contact data (e.g. email data).

We leverage prior work by Holme arguing, through a number of case studies, that the
distribution of relation durations is exponentially decaying (Holme 2003). The probability
density function of an exponential distribution is

λe−λx, x ≥ 0

where λ is called the rate parameter.6 For clarity, we define the inverse of λ as β = λ−1. β
can be thought of as a sort of survival parameter. As the expected value of an exponential
distribution is λ−1 = β, β is then the expected lifetime of a unit within the system. Thus, in
building our networks, we decay ties by sampling from an exponential distribution, resam-
pling when an existing link is reinforced. A visualization of this process can be seen in

6Not to be confused with the SIENA model rate parameter, described in Section 5.1.4.
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Fig. 3 Our network construction process. Evolution of an email thread (top) and the corresponding network
(bottom). User A starts an email thread. B’s response results in a network link A → B, indicating knowledge
flows from A to B. Later, C’s response to A results in another link. A → B is removed from the network
when β days have passed since the last response by B

Fig. 3. The parameter λ that we choose is the largest value such that the Jaccard similarity
(Jaccard 1912) of consecutive network snapshots is at least 0.3 for 3 or more consecutive
waves.7 The Jaccard similarity here is used as a measure of network stability (Snijders et al.
2010; Batagelj and Bren 1995), as suggested by the creators of SIENA. We choose λ val-
ues in intervals of 30 days, starting from λ = 1/30 (λ = 0 corresponds to no decay). Our
choice of at least 3 consecutive waves is due to the algorithm that SIENA uses to estimate
our models, which we refer to for a thorough description (Snijders 2014). In essence, hav-
ing only two consecutive waves limits the amount of variability available in the observed
data, which can affect parameter estimation. Our models are then built using only those
consecutive waves determined by the above logic.8 To check that our decay method indeed

7Note that this is equivalently the smallest such β.
8Axis2/Java had high fluctuations in activity (both social and technical) towards the beginning its lifetime.
As a result, model estimations which included these time periods proved difficult to estimate; in particular,
the number of ministeps required before arriving at the time for the next wave became too large. As we are
interested in the average social and technical behaviors of projects, the offending waves were removed from
the analysis for this project.
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generates networks with typical social network properties, we calculated network control
profiles (Ruths and Ruths 2014) for each wave in each project. All generated networks are
heavily source dominated, typical of social networks.

4.3 Baseline Wave Choice

Recall that in SAOMs, we consider “network panel waves” as sample points within our lon-
gitudinal network and behavioral data. For each wave, we have a snapshot of both the state
of the network and the state of actors’ behaviors. In more standard sociological data (e.g.
survey data), waves are chosen as the points at which surveys are administered. However,
with emails, this delimitation is unclear. Thus, we must decide the points in time that we
wish to take snapshots of the data, as taking data snapshots at each and every point in time
that an email is sent would make model simulation computationally infeasible.

With more waves comes potentially more accurate models, at the trade-off of including
more noise in the data. In addition, as the amount of time between waves approaches zero,
the assumption of time-constant parameter estimates becomes less correct as noise “spikes”
in the data will increase which may overly influence parameter estimates. The effect of
choosing time points that are farther apart is analogous to smoothing a noisy signal over
time. E.g. in trade data, aggregating by day will introduce many more “spikes” between days
as day-to-day variation may be large compared to month-to-month or year-to-year variation.

Using fewer waves can cut down on noise, at the trade-off of potentially reducing accu-
racy. For guidance on this matter, we consider prior work using SIENA, which is often
applied to data with many fewer than 10 waves (Snijders et al. 2010). These studies also
often utilize data over a much smaller period of time (e.g. on the scale of a few years) com-
pared to our data. Hence, we chose to use a baseline of 8 waves, where the wave dates are
chosen such that the number of emails between waves is the same. E.g. if there are 120 total
emails, wave 1 is chosen to be the point at which a total of 15 emails have been sent, wave
2 is at the point of 30 emails, etc.9 We found that using more than 8 waves generally led
to instability of the estimation procedure as well as departures from the constant parameter
estimate assumption (as using more baseline waves means less time between consecutive
waves). Using fewer than 8 waves as a baseline also sometimes led to some instability in the
estimation procedure.10,11 Thus, we found that the choice of 8 waves as a baseline provided
a good balance between the want of a larger sample size and the necessity of fulfilling the
model assumptions.

4.4 Joiners and Leavers

Longitudinal network data that spans a long period of time, as ours does, is bound to have
nodes that join and leave the network over time. We consider a node as having joined the
network the moment that they acquire their first tie and as having left the network when their
total tie count (total degree) drops to zero. In addition, we remove all nodes with zero total

9The authors also attempted to use an equal number of days as a separator of waves. However, this led
to extreme skew and imbalance in network size (nodes and ties) as projects tend to have “burst” activity
behavior; earlier waves were much less varied compared to later waves.
10In particular, there were instabilities in estimating the network rate parameters – the number of “chances”
an actor has to change its ties.
11The choice of 8 waves is likely specific to our data – SIENA supports any number of waves, though time
complexity increases with more waves.
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degree for all time, indicating no emails sent or received for the entirety of the project. Note
that this can happen if a developer does not communicate on the email mailing list even if
they contribute work (i.e. commits) to the project. This step is performed to adhere to the
SIENA guideline that all nodes in the network must be senders or receivers (or both), unless
specified as a “joiner” or a “leaver” at a particular wave. In addition, nodes are not permitted
to drop to zero total tie count more than once - we call these nodes “socially transient” and
remove them. We are interested in only those nodes who are socially active for the entirety
of their time in the project, as our focus is to study the role of ties on developer behavior
(and vice-versa), and socially transient nodes may introduce noise that overly influences our
model. The total number of nodes filtered by the above process can be found in Table 1. As
shown, the number of “socially transient” (i.e. filtered) nodes is low. The number of nodes
modeled in each network adheres to SIENA guidelines, as described in referenced work
(Snijders et al. 2010) suggesting that the number of actors should likely be more than 20.

4.5 Model Interpretation

The result of each modeling analysis is a log-linked objective function. From it we can
calculate predicted probabilities by exponentiating the value of the objective function for
a particular scenario, and dividing it by the sum of exponentiated objective values for all
possible scenarios. An additional way to interpret this is as follows. If an actor has the
chance to make a change in their outgoing ties, and the two states xa and xb are possible
results of this change, then fi(xb) − fi(xa) is the log-odds ratio for choosing between these
alternatives. This means that the ratio of the probability of xa and xb as next states is:

efi (xb)−fi (xa) = efi(xb)

efi (xa)

The objective functions are typically used to compare how “attractive” different potential
tie changes are (Snijders et al. 2010).

As a simple example, consider a hypothetical model with an estimated density effect of
−2.0 and an estimated reciprocity of 0.8. The associated network objective function is thus:

f net
i (x) =

∑

j

(−2.0xij + 0.8xij xji)

Comparing between the choices of (1) adding a reciprocated tie or (2) adding a non-
reciprocated tie, (1) yields: −2.0 + 0.8 = −1.2 while (2) (i.e. xji = 0) yields: −2.0. Thus,
when comparing these two alternatives, adding a reciprocated tie is preferable to adding a
non-reciprocated tie.

5 Case Studies: Applying SAOMs to ASF Project Networks

We theorize (with support from literature) that it is more likely for individuals’ behavior
to affect others and spread through a network if it is readily observable (Rogers 2010),
and if the behavior is desirable and easy to imitate. The technical behaviors we examine in
this work are commit rate (a light-weight proxy for productivity), high file ownership, and
minor contributor count. These behaviors have been studied before as important indicators
of bugs, socio-technical structure, and overall software quality (Curtis et al. 1988; Fong
Boh et al. 2007; Weyuker et al. 2008; Bird et al. 2011; Rahman and Devanbu 2011). Bird
et al. found that measures of ownership (such as proportion of ownership for the top owner
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and the number of low-expertise developers) have a relationship with both pre- and post-
release failures (Bird et al. 2011). Rahman and Devanbu studied authorship at a fine-grained
level, looking particularly at specific implicated buggy code segments, finding that higher
levels of ownership by a single author is associated with buggy code (Rahman and Devanbu
2011). Additionally, they suggest that changes made by developers with little experience in
a particular file (i.e. minor contributors) are strongly associated with defects.

On the other hand, some important technical observables, like defects in code, e.g., are
not clearly associated to developer actions, as demonstrated by the challenge they present in
identifying (Johnson et al. 2013). They are also clearly undesirable to imitate, even if easy to
find. Though a study of bug spread through a social network would perhaps be interesting,
since it is not clear through which mechanisms that would happen, we think it unlikely for
software bugs to spread through a socially-defined network so we chose not to study them.
We contrast that to the measures of commit rate, high file ownership, and minor contributor
count, which are much more readily observed through version control history and developer
mailing lists.

5.1 Trace Data

The Apache Software Foundation (ASF) is a collection of hundreds of OSS projects. The
primary consideration for potential case study projects is whether or not we have enough
nodes (i.e. developers) with enough emails over time to warrant a study using SAOM.
Of the 31 projects for which we had email data, we performed an initial examination of
evolutionary network size, and narrowed the field to 9 potential projects.

To manage this project in terms of human and computational resources, and for the pur-
poses of presenting the findings in a typically sized paper, we chose to model 2 projects,12

Ant, and Axis2/Java, from different subject domains with sufficient number of develop-
ers (translating to nodes) and emails over time to meet the assumptions of the SAOM.
These projects were selected as they vary in network size, growth and decay rates, and are
cross-domain.

For each project, data was collected from the developer mailing lists and version con-
trol systems. As we aim to model the co-evolution of social activity and technical activity,
we combine both developer mailing list data and version control data to build our models.
Table 1 shows descriptive statistics for the projects under study, and Fig. 4 provides a dia-
gram of our data gathering processing, merging, and analysis pipeline. In this section, we
describe the processes we followed to extract data from the above sources and an overview
of network construction.

5.1.1 Alias Unmasking

OSS participants often use different aliases (combinations of names and email addresses)
even within the same project, which can lead to problems. In addition, as we are min-
ing data from two data sources (mailing lists and version control history), the problem
can become even more difficult as participants may use different aliases across data
sources. For example, a developer named John Smith may have multiple aliases (e.g.

12We initially built models on 3 projects: Ant, Axis2/Java, and Derby. However, Derby results were similar
to Axis2/Java results (e.g. positive behavioral selection). As we are interested in presenting case studies of
the application of the SAOM method in OSS, we only discuss results for Ant and Axis2/Java.
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Fig. 4 Process diagram of data gathering, processing, network construction, modeling, and analysis

<John Smith, jsmith@gmail.com>, <John, john.smith@gmail.com>,
<J. Smith, jsmith@jsmith.com>). These aliases all represent a single person,
and must be treated as such in order to accurately represent an individual’s activity in a
project. Unmasking aliases has been addressed many times in the literature (Bird et al.
2006; Vasilescu et al. 2014; Kouters et al. 2012; Gharehyazie et al. 2013), without any
perfect solution (Goeminne and Mens 2013). We use the method described by Gharehyazie
et al., which employs an enhanced version of the technique developed by Bird et al. (Bird
et al. 2006) based on heuristics and string similarity measures. The heuristics involve
“guessing” likely email prefixes based on first and last names (e.g. John Smith might use
prefixes such as john, johnsmith, jsmith).

In summary, the process consists of the following steps. First, all suffixes, prefixes, and
generic names e.g. Dr., Mr., Admin, are removed. Then, a similarity score based on Leven-
shtein (edit) distance is calculated for each pair of email addresses as described Bird et al.
(Bird et al. 2006). Perfect matches (having score of 1) are merged automatically, and less-
than-perfect matches that achieve an empirically defined threshold (based on other Apache
projects to offer a good trade-off between false positives and false negatives) are studied
manually, and reviewed by another researcher for accuracy.

5.1.2 Constructing Email Networks

In OSS projects, it is often the policy to direct as much communication as possible through
project-specific mailing lists so all participants can benefit from the exchange of informa-
tion (Bird et al. 2006). All messages sent to this list will be broadcast to all subscribed
participants. These broadcast messages differ from standard point-to-point email commu-
nication as there is no clear and distinct recipient. To generate networks using this data, we
use the method described by Gharehyazie et al. (Gharehyazie et al. 2013) and Bird et al.
(Bird et al. 2006) as follows. If person A is the initial creator of an email thread (broad-
casting their message to all participants), and person B responds to this thread, we can say
with high confidence that person B has read and acknowledged the information provided by
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person A. Thus, we create a network link from A to B, representing this information flow.
Although this method precludes the flow of information as a result of two responses in the
same thread (e.g. person B and person C may have knowledge transferred B → C due to a
response from B to A’s thread), we believe the method presented here is appropriate for the
questions we wish to answer. In addition, our method provides a high level of confidence
that information has indeed been passed in the direction indicated by the network.

The primary guiding principle behind our network construction logic is that we do not
believe that raw emails themselves should be considered an exact proxy for social relations.
We construct our networks to reflect an actual interaction between individuals, rather than
merely reflecting that an email has been sent from one individual to another; we are not
treating the emails themselves as edges in our network. Instead, the edges represent events
of knowledge being passed between individuals in the network, as proxied by responses and
ongoing back and forth emails. There is a theoretical “knowledge threshold” required to
create an edge in our network. The initial broadcast from A to all participants does not pass
this threshold; we cannot be certain that anyone who did not reply to A actually received
information. Similarly, responses from B and C to post A (described above) do not create
a link B → C, as we cannot be certain that C has received information from B. Construct-
ing networks in this manner provides higher confidence that we are capturing meaningful
social linking between developers. The process of constructing email networks can be seen
in Fig. 3.

In this work we are interested in knowledge or information flow, as exhibited by develop-
ers actively discussing on the mailing lists different aspects of a project, e.g., the existence
of bugs, collaboration opportunities, social or code structure changes, etc. Studying knowl-
edge flow does not a priori invalidate or contradict the assumptions of the SAOM modeling
framework, or the SIENA tool; the emphasis of knowledge flow is merely provided to give
an intuition of how to interpret model results. Moreover, studying knowledge flow is akin
to the use of SAOMs in studying the spread of social norms, e.g. norms in communication
between judges in the French court system (Lazega et al. 2011). Here, the behaviors under
study are analogous social norms for software, e.g. how much should a developer commit
over time?

5.1.3 Mining and Computing Technical Behaviors

Source code repositories paired with version control systems (e.g. Git, SVN) allow (poten-
tially) distributed developers to collaborate by maintaining a full history of changes and
associated logs for each change. The projects studied here (Ant, Axis2/Java) all currently
use Git13 for version control, though some Apache projects migrated from using SVN to
Git at some point in time.

Current Git logs include the history of changes made while the project used SVN, allow-
ing us to reach all the way to the beginning of the project’s history. This allows us to gather
information for each developer at all points in time regarding e.g. their commits and what
files these commits have touched. This information is used to compute our dependent behav-
ioral time series for each developer for each project in our models. Note that the technical
data is gathered up to a particular point in time; the “end” of our data is the temporal end
of the data that we have available for study. This does not necessarily imply that work on a
given project has ceased.

13http://git-scm.com/
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For our three chosen behaviors (Section 5), we defined the thresholds as follows:

1. High File Ownership: total count of files per developer where their number of commits
is ≥ 70% of total commits to the file

2. Minor Contributor: total count of files per developer where their number of commits is
≤ 5% of total commits to the file

3. Commit Rate: number of commits in a time window equal to the expected link lifetime;
see Section 4.2

We found no appreciable difference between high file ownership at ≥ 70%, ≥ 80%, and
≥ 90%, and chose ≥ 70% as we believed it to be an adequate level at which to consider high
ownership according to prior work (Bird et al. 2011; Rahman and Devanbu 2011). The level
at which we consider a minor contributor is also established by prior work (Bird et al. 2011).
Recall that our SAOM simulate behaviors in single steps (i.e. at each step, a behavior can
increase by 1, decrease by 1, or stay the same). To ensure that our simulations are tractable,
we transform our raw behavioral data (e.g. number of commits in a time window) into an
ordinal form as per SIENA guidelines, described in Table 3.

5.1.4 Model Building

The model building procedure is split into multiple parts. Behavioral selection parameters
are tested to be operationalized by similarity, sameness, alter value, ego value, or the inter-
action between ego value and alter value. Influence is operationalized by average alter in
all cases (except in the high file ownership model for Axis2/Java; see Section 5.2). Descrip-
tions of a set of parameters can be found in Table 4. The set of tested behavioral selection
parameters chosen are the most basic representations of social selection provided by the
SIENA package.

Both alter’s cumulative email count (log) and alter’s age (log) are used as controls for
general social activity in our models, which may otherwise be confounded with social selec-
tion. We view these as necessary and important controls for all models due to the structure
of the network itself. Since a link is formed between a thread creator and a thread responder
when a response is made, if an actor is either a) generally socially active (represented by
cumulative email count) or b) generally “old” in terms of project participation, we hypoth-
esize that it is more likely for this actor to respond when compared to an actor who has low
values of these variables. Thus, these control effects are included in all models regardless of
significance. Also included in the models are the network rate and behavioral rate estimates

Table 3 Description of ordinal transformation categories for behavioral data. All percent ranges are
exclusive-inclusive

Ordinal value Description

0 No behavioral value or the same behavioral value for

the rest of time (implying cessation of technical

activity)

1 0–25 % quantile raw value for a wave

2 25–50 % quantile raw value for a wave

3 50–75 % quantile raw value for a wave

4 75–100 % quantile raw value for a wave
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Table 4 A subset of model parameters usable in SIENA analysis. xij is an indicator variable where xij = 1
indicates the presence of a tie from i to j . All covariates are mean-centered internally by SIENA

Parameter Description

Transitive Triplets The number of pairs of actors (j, h) to both of whom

i is tied, while j is tied to h

snet
ik = ∑

j,h xij xihxjh

Outdegree Activity (sqrt) Reflects tendencies for actors with high outdegrees to

send extra outgoing ties “because” of their high out-

degrees; leads to dispersion in outdegrees

snet
ik = x1.5

i+ = xi+
√

xi+
Indegree Popularity (sqrt) Reflects tendencies for actors with high indegrees to

attract extra incoming ties “because” of their high in-

degrees; leads to dispersion in indegrees

snet
ik = ∑

j xij

√∑
h xhj

Alter’s Cumulative Email Count (log) The log sum of cumulative email count for all actors

to whom i has a tie

snet
ik = ∑

j xij ej

Behavior Similarity The sum of centered behavior similarity scores be-

tween i and the other actors j to whom he is tied

where ˆsim is the mean of all similarity scores, defined

by simij = �−|zi−zj |
�

, with � = maxij |zi − zj | being
the observed range of the behavioral value z

snet
ik = ∑

j xij (simij − ˆsim)

Behavior Sameness The number of ties of i to all other actors j who have

exactly the same value of the behavioral value z

snet
ik = ∑

j xij I {zi = zj }
Average Alter The product of i’s behavior multiplied by the average

behavior of his alters (similar to an ego-alter

covariance)

sbeh
ik = zi (

∑
j xij zj )(

∑
j xij )

(not shown). These values indicate the average number of “chances” an actor has to change
their outdegree or behavior, respectively, by −1, ±0, or +1. The general model building
procedure is guided by recommendations given by (Snijders et al. 2010) and is as follows:

1. Fit a preliminary base model consisting only of network and behavioral rate parameters,
density, reciprocity, alter’s cumulative email count (log), alter’s age (log), linear shape,
and quadratic shape.

2. Use the score-type test (STT) of Schweinberger (Schweinberger 2012) to test for sig-
nificance of transitive triplets, transitive ties, and 3-cycles without estimation. Of those
with significance p < 0.05, perform stepwise selection of parameters with highest sig-
nificance and estimate the resulting models until the score-type test no longer detects
significance.

3. Use the STT on indegree popularity (sqrt), outdegree popularity (sqrt), indegree activity
(sqrt), outdegree activity (sqrt), number of actors at distance 2, ego’s cumulative email
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count (log), and ego’s age (log). Perform stepwise selection of these parameters as in
2) above, estimating resulting models.

4. Use the STT to test for behavioral selection effects without estimating influence
parameters, operationalized as stated above. Keep note of all potentially significant
parameters (p < 0.05).

5. Use the STT to test for behavioral selection effects while controlling for influence (i.e.
under the model with influence estimated). Estimate the single14 selection parameter
that is most significant under tests from 4) and 5).

Note again that in estimating models, network dynamics and behavioral dynamics are
treated simultaneously as dependent variables; they are modeled together. The SIENA
model analysis yields parameter estimates for each βnet

k and βbeh
k in Equations 1 and 2.

As a concrete example, consider the model results for Axis2/Java in Table 6. The
specification of the network objective function is:

f net
i (x) = βnet

densxi+ + βnet
rec

∑
j xij xji + βnet

outax
1.5
i+ + βnet

inp

∑
j xij

√∑
h xhj

+βnet
tties

∑
j xijmaxh(xihxhj ) + βnet

3cyc

∑
j,h xij xjhxhi

+βnet
altb

∑
j xij I {zi = zj } + βnet

alte

∑
j xij ej + βnet

alta

∑
j xij aj

where zj is actor j ’s behavioral value, ej is actor j ’s cumulative email count, and aj is actor
j ’s age15. The behavioral objective function is constructed in the analogous way.

5.2 Case Study Results

We built models for each of the three behaviors for each project (Section 5.1), resulting in 6
estimated models. Tables 5 and 6 show results for tested behaviors in Ant and Axis2/Java,
respectively. We omit some in-text parameter estimate reiteration, though all estimates and
their significance can be seen in the respective aforementioned tables.16

5.2.1 Goodness of Fit

To assess goodness of fit, we compare simulated networks to observed networks with
respect to various statistics of the networks themselves i.e. indegree distribution, out-
degree distribution, geodesic distribution, and behavior distribution, as proposed and
elaborated by Lospinoso (Lospinoso 2012). In essence, the method operates by compar-
ing observed values at the ends of periods with simulated values for the ends of periods.
The simplest method of presenting this comparison is through the use of violin plots

14An exception to this rule exists if the ego X alter interaction selection effect is most significant. In this case,
one must control for the lower level structures of ego value and alter value when estimating the interaction
effect. This is standard practice in general statistical modeling.
15Note that zj is used here to represent actor j ’s behavioral value, while the z parameter is missing from
the function signature. This is to emphasize that zj here is treated as a covariate and is not modeled by the
network objective function.
16For file ownership behavior in Axis2/Java (Table 6), addition of the influence effect of average alter caused
high instability in estimation of the model. As a result, the model for high file ownership behavior only
includes the linear shape and quadratic shape parameters. The exclusion of this parameter in the model should
not appreciably affect our outcomes or goodness of fit as the score-type test of this parameter suggested
insignificance.
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Table 5 SIENA model analysis for Ant. Bold sections indicate estimated selection and influence effects

Ownership Commit rate Minor. Contrib. Count

Est. SE Est SE Est SE

Network effects

Density −2.280*** 0.284 −3.082*** 0.244 −2.713*** 0.280

Reciprocity 0.864*** 0.170 0.954*** 0.157 0.826*** 0.187

Outdegree Activity (sqrt) 0.134* 0.062 0.161** 0.058 0.232*** 0.063

Number of Actors at Distance 2 −0.143** 0.045 −0.105* 0.041 −0.114* 0.042

Ego’s Cumulative Email Count (log) −0.128** 0.042 −0.146*** 0.039 −0.144** 0.046

Ego’s Age in Project (log) −0.094*** 0.023 −0.058** 0.019 −0.106*** 0.028

Transitivity effects

Transitive Triplets 0.212*** 0.034 0.213*** 0.031 0.216*** 0.044

Transitive Ties 1.175*** 0.199 1.184*** 0.188 1.273*** 0.216

3-cycles −0.203*** 0.048 −0.189*** 0.044 −0.189*** 0.051

Behavioral selection effects

Selection Parameter

(Same, Similar, Same) −1.835*** 0.544 −1.150*** 0.296 −2.305*** 0.682

Alter Controls

Alter’s Cumulative Email Count (log) −0.017 0.030 −0.049+ 0.027 −0.020 0.029

Alter’s Age in Project (log) −0.115*** 0.022 −0.080*** 0.016 −0.139*** 0.026

Behavioral Effects

Linear Shape −2.400** 0.900 −1.194*** 0.154 −1.377*** 0.251

Quadratic Shape 0.478*** 0.133 0.330*** 0.045 0.364*** 0.061

Influence Effects

Average Alter Behavior 1.087 0.691 0.230 0.168 0.336 0.235

+ p <0.1; * p <0.05; ** p <0.01; *** p <0.001;

(Hintze and Nelson 1998), which use kernel density estimates to present the distribution
of the simulated statistic with the observed values overlaid. The aim is to have simulated
statistics which follow the observed statistics closely i.e. overlaid observed values lie within
the confidence bands of simulated statistics. Figures 5, 6, 7, and 8 show these plots for high
file ownership behavior for projects in our case study. Of those pictured, all models provide
satisfactory goodness of fit except geodesic distribution, which is slightly overestimated by
the models. This could be due to multiple measures of transitivity for each model. However,
the fit is still satisfactory for our analysis, as we focus primarily on local structures i.e. at
geodesic distance of 2, meaning an overestimated geodesic distribution beyond a distance of
2 should not affect our discussion. All other tested behaviors showed very similar goodness
of fit to those pictured.

5.2.2 Behavioral Selection Effects

Ant Commit rate behavior selection is best represented by negative behavioral similarity.
This suggests that knowledge is less likely to flow (or be maintained) between actors with
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Table 6 SIENA Model Analysis for Axis2/Java. Bold sections indicate estimated selection and influence
effects

Ownership Commit rate Minor. Contrib. Count

Est. SE Est SE Est SE

Network effects

Density -3.616*** 0.162 -3.597*** 0.190 -3.664*** 0.243

Reciprocity 0.637*** 0.072 0.603*** 0.071 0.628*** 0.076

Outdegree Activity (sqrt) 0.258*** 0.019 0.247*** 0.020 0.256*** 0.024

Indegree Popularity (sqrt) 0.205*** 0.054 0.194** 0.066 0.209* 0.104

Transitivity effects

Transitive Ties 0.708*** 0.113 0.680*** 0.107 0.703*** 0.152

3-cycles 0.062*** 0.016 0.076*** 0.016 0.060*** 0.016

Behavioral selection effects

Selection Parameter

(Same, Same, Same) 0.131+ 0.079 0.266* 0.107 0.236** 0.083

Alter Controls

Alter’s Cumulative Email Count (log) -0.013 0.018 -0.014 0.019 -0.013 0.025

Alter’s Age in Project (log) -0.018* 0.007 -0.011 0.007 -0.013+ 0.007

Behavioral Effects

Linear Shape -1.288*** 0.135 -0.944*** 0.096 -1.031*** 0.297

Quadratic Shape 0.427*** 0.054 0.372*** 0.041 0.417*** 0.078

Influence Effects

Average Alter Behavior — — 0.230 0.168 0.429 1.702

+ p <0.1; * p <0.05; ** p <0.01; *** p <0.001;

similar commit rate behavior. For high file ownership behavior (−1.835***) and minor con-
tributor behavior, behavioral selection is best represented by negative behavior sameness.
This suggests that knowledge is less likely to flow (or be maintained) between actors with
the same high file ownership or minor contributor behavior.

Axis2/Java Behavioral selection is best represented by positive behavioral sameness,
though this effect is only suggestive for high file ownership behavior (0.131, p < 0.1).

Of the two projects, though behavioral selection may be operationalized in different
ways, we see positive behavioral selection effects in Axis2/Java while Ant has negative
effects. This suggests that knowledge has a propensity to flow towards alters with similar or
the same behavior as the ego in Axis2/Java, while knowledge tends to flow towards alters
with dissimilar behavior as the ego in Ant. Behavioral selection is best operationalized by
either behavioral similarity (Ant commit rate) or behavioral sameness (Ant high file own-
ership and minor contributor count, Axis2/Java all three behaviors). Note that behavioral
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Fig. 5 Indegree (left) and outdegree (right) distribution goodness of fit plots for Ant high file ownership.
Dotted lines are 95 % confidence bands. Observed values at ends of periods are pictured in red. Violin plots
show simulated values at ends of periods
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Fig. 6 Indegree (left) and outdegree (right) distribution goodness of fit plots for Axis2/Java high file owner-
ship. Dotted lines are 95% confidence bands. Observed values at ends of periods are pictured in red. Violin
plots show simulated values at ends of periods
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Fig. 7 Behavior (left) and geodesic (right) distribution goodness of fit plots for Ant high file ownership.
Dotted lines are 95 % confidence bands. Observed values at ends of periods are pictured in red. Violin plots
show simulated values at ends of periods
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Fig. 8 Behavior (left) and geodesic (right) distribution goodness of fit plots for Axis2/Java high file owner-
ship. Dotted lines are 95 % confidence bands. Observed values at ends of periods are pictured in red. Violin
plots show simulated values at ends of periods
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similarity and behavioral sameness are very similar - similarity is calculated using a similar-
ity score (see Table 4), while sameness is given a value only when two individuals have the
exact same behavioral value. In the case of Axis2/Java, the existence of behavioral selection
in the form of positive behavioral sameness suggests that there may be “knowledge circles”
in Axis2/Java, based on behavior - those who exhibit the same behaviors generally have
knowledge flow between them. This is discussed further in Section 6.

5.2.3 Network, Transitivity, and Influence Effects

Reciprocity is significant and positive for all models, and density is significant and neg-
ative for all models. Reciprocity is considered a basic feature of most social networks
(Wasserman 1994). Thus, it is not surprising that reciprocity is highly significant in our
models. Abbreviations used below are for transitive triplets (ttrip), transitive ties (tties), and
3-cycles (3c).

For all behaviors, we see a net push towards higher transitivity (Ant high file owner-
ship ttrip 0.212***, tties 1.175***, 3c −0.203***; Axis2/Java high file ownership tties
0.708***, 3c 0.062***). In addition, for all behaviors and all projects, we see positive and
significant outdegree activity effects. This suggests that knowledge sources with high out-
degree have a tendency to increase their outdegree. Additionally, in Axis2/Java, we see a
positive effect for indegree popularity, suggesting high dispersion in both outdegree and
indegree. In all cases, this indicates the existence of clustering. Generally speaking, most
social networks have a tendency towards transitivity or clustering (Snijders et al. 2010). In
graph theoretical terms, two-paths tend to become closed; colloquially, friends of friends
often become friends themselves (Holland and Leinhardt 1971).

The above results together with behavioral selection results show that the high-level
social structure of these projects is relatively constant even across multiple behavior
dependent variables (i.e. transitivity, reciprocity, clustering of degree).17 Yet, in the presence
of these similarities, nuanced differences (i.e. different social selection tendencies) shine
through. This shows the power of the SAOM method.

We see no significant effect of network structure on behavior evolution in Ant (aver-
age alter Est. 1.087 SE 0.691) or for Axis2/Java18 In other words, we find no behavioral
influence effect in all projects for all behaviors tested.

5.2.4 Ego Email, Ego Age, and Alter Control Effects

Ant For email measures, we see a negative effect of ego’s cumulative email count (high
file ownership −0.128**) with an insignificant alter effect. A positive effect for outdegree
activity (as found in this project) suggests that those who create many email threads or incite
discussion are likely to continue that trend. However, a negative effect of ego’s cumulative
email count suggests that this self-enforcing growth mechanism may not be too strong. We
also see significant and negative ego (high file ownership −0.094***) and alter (high file

17Evidence of clustering initially raised a concern with the authors that the constructed networks had extreme
levels of clustering. Further analysis showed that this was not the case; the clustering is at an acceptable level
according to prior work in these social networks.
18Recall that we did not estimate average alter influence for the high file ownership model in this case.
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ownership −0.115***) age effects for all behaviors, suggesting that actors who are older
are less likely to create or maintain ties, and receivers of ties are less likely to be older. This
can be interpreted as an eventual “social isolation” of older users.

Axis2/Java We see insignificant alter email effects for all three behaviors, and a significant
negative alter age parameter only for high file ownership behavior.

For those projects in which alter age is significant (Ant in all three behaviors, Axis2/Java
in high file ownership), the effect is negative. This suggests that knowledge is more likely
to flow in the direction of lower age while controlling for the mentioned behaviors.

5.2.5 Behavioral Effects

For all models in Ant and Axis2/Java, we see a significant and negative linear shape, indi-
cating that developers are more likely to score below the mean for the respective behavior;
in other words, developers tend to drift towards lower values of respective behaviors. In
addition, we see a significant and positive quadratic shape for all models, suggesting that
changes in behavioral value are self-reinforcing; those who are high in their behavior are
more likely to further increase their behavior, and those who are low in their behavior
are more likely to further decrease their behavior. This can be an indication of addictive
behavior (when it is possible for such a behavior to be addictive) (Ripley et al. 2014).

6 Discussion

The findings in this work show details of deeply embedded social phenomena in open source
projects that have not been adequately or robustly identifiable in prior work. As shown
above, the high-level social structure (i.e. transitivity, reciprocity, clustering of degree) of
the projects under study is relatively constant even across multiple behavior dependent vari-
ables. However, though the projects may all have similar high-level social structure, each has
fine-grained attributes (e.g. specific social selection dynamics discussed in Section 5.2.2)
that are different from one another. Our ability to identify this is in large part due to the
flexibility provided by the SAOM method. Previous statistical dynamic network models –
specifically those of Wasserman (Wasserman 1980) and Wasserman and Iacobucci (Wasser-
man and Iacobucci 1988) – do not allow complicated dependencies between ties such as
those generated by transitive closure (Snijders et al. 2010). SIENA has e.g. transitivity in
its library of measures, allowing one to control for it while testing for other tendencies (e.g.
homophily) that may be generically confounded (Shalizi and Thomas 2011).

An example of this flexibility is presented through evidence of “knowledge circles” in
some projects. We define a “knowledge circle” as a group of clustered individuals who
share knowledge with one another. In Axis2/Java, this is evidenced by positive behavioral
sameness and high clustering (outdegree activity, indegree popularity, and transitivity). This
indicates that knowledge flows within clustered groups between those with the same behav-
ior (in Axis2/Java). On the other hand, for Ant, selection effects are negative for all three
behaviors, with evidence of clustering. This indicates that the “knowledge circles” in Ant
are composed of individuals with dissimilar behaviors. The existence of “knowledge cir-
cles” is important as they are a unique attribute that can be used to describe differences in
organizational structure and the social dynamic within a project. This information can be
used to determine whether particular goals of a project are being met.
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The results discussed in Section 5.2.3 (i.e. clustering) are typical of “standard” social net-
works, such as friendship networks (Holland and Leinhardt 1971; Davis 1970). We expect
a negative effect for density as our networks have a bounded size; a positive and significant
effect would suggest unbounded growth in degree. As a result, we can safely say that our
networks obey the general guidelines of what is considered a “social network”, and can be
analyzed as such.

6.1 SAOM in a Software Engineering Context

The direction of knowledge flow combined with information regarding overall network
structure (e.g. “knowledge circles”) can be an important indicator of overall “health” of an
open source project. Whether or not this structure is an indicator of positive or negative
“health” of a project depends on one’s philosophical standpoint on the “correct” structure of
open source projects. In a project that aims to have an equitable dissemination of informa-
tion to all participants, high clustering and knowledge flows between those with the same
behavior (as is the case in Axis2/Java) could be an indicator of negative health; in a project
that aims to have a hierarchical structure (as in the standard description of the onion model
of team structure), this can be an indicator of positive health. In contrast to the case in
Axis2/Java, one may believe that a structure which promotes interaction between those with
differing behaviors is desirable (as in Ant, evidenced by negative behavioral selection esti-
mates for all behaviors). These organizational structures all have their merits, and whether
or not the structure of a given project is “healthy” depends on the goals of the project itself.
SAOMs and SIENA allow for the identification of such complex structures in the presence
of confounds and are thus useful in the realm of software engineering.

In our analysis of age effects (Section 5.2.4), we found that when alter age is significant,
the effect is negative; this means that knowledge is less likely to flow in the direction of
higher age. Due to the way that our networks are structured, this result implies that those
who respond to email threads are younger in project age. It may be that these individu-
als are eager to convey their social or technical prowess, so they are more motivated than
those who are older in project age to engage in social activity. This idea is corroborated
by work showing that social activity plays a major role in advancing one’s status in OSS
(Gharehyazie et al. 2014). As is the case with behavioral selection and clustering, whether or
not this is a “healthy” structure depends on one’s philosophical standpoint and the goals of a
given project. In addition, in Ant we see evidence of eventual “social isolation” of develop-
ers over time, evidenced by significant negative ego and alter age effects for all behaviors.
The exact cause of this phenomenon could be a focus of future work.

As shown in Table 2, the computation time for model estimation on real projects is rea-
sonable. The authors believe that this method can be applied to even larger data sets with
relative ease, as the computation time barrier is relatively low. OSS projects are extremely
complex, dynamic systems, which evolve at varying rates with differences at a very detailed
level. The ability to extract such fine-grained results (e.g. evidence of social selection and
possible social isolation) in the presence of potential confounds (e.g. transitivity) in a rea-
sonable amount of time illustrates the usefulness of SIENA and general SAOM methods in
the field of software engineering.

7 Conclusion and Threats to Validity

The SAOMmethodology is a useful tool in general: it allows for the study of network archi-
tecture and behavior co-evolution within complex, dynamic networks, where identifying
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potential confounds is otherwise a very difficult task. In particular, it allows researchers
to explicitly model behavioral influence and behavioral selection, two effects which are
generically confounded in simpler models.

We found no evidence of behavioral influence for all projects and all behaviors tested.
However, except for high file ownership behavior in Axis2/Java where there was a sug-
gestive effect, we found significant effects of selection (homophily) in all projects for all
behaviors, all positive for Axis2/Java and all negative for Ant. Note that the existence of
behavioral selection in software projects shouldn’t be interpreted as “good news” or “bad
news”; whether or not its effect is beneficial or detrimental depends heavily on the dynam-
ics of the particular project and if its effects are desired. We believe the methods used in this
work can be applied to the analysis of process models and organizational structure within
OSS projects.

In addition, we found that all projects share high-level features (e.g. a push towards
higher clustering), while differing in fine-grained details such as the best selection param-
eter, the sign of selection parameter, etc. This is important as it characterizes some of the
differences between project ecosystems which may otherwise be difficult to isolate due to
the great complexity of network and behavioral co-evolution. This also shows the power
of the SAOM methodology – separation of complex features is an extremely useful feature
when studying a system as varied and complicated as OSS. We believe that the methodology
here would be useful to a software engineering researcher as it explicitly models effects that
may otherwise be generically confounded, allowing direct testing of fine-grained hypothe-
ses in the presence of complex interactions over time. We have shown that the SAOM
approach is applicable to longitudinal software engineering data, and look forward to future
applications of this methodology in software engineering.

We note a number of threats to validity to our conclusions. Even though we chose our
case study projects so as to be as diverse as possible they are all from ASF, a tightly knit
community with well defined rules, and consequently we are likely capturing less variance
than that in the full OSS project space. Choosing a small number of projects was deliberate,
imposed by the computationally intensive SIENA algorithms and manually intensive model
building procedure.

We also acknowledge issues with the way we assemble our email networks based on the
discussion boards posts. Developers use a varied number of communication methods, with
email being one of them. The inclusion of other means of communication e.g. IRC chat
logs could strengthen our work. Additionally, our particular method of network construction
(Fig. 3), though following prior work, is just one realization of the possible constructions.
Another potential construction is to have a tie go from the thread creator to every mailing
list subscriber. These threats, while not trivial, have been noted before (Gharehyazie et al.
2013; Bird et al. 2006).

Though SAOMs were theoretically created to be adaptable to a multitude evolving net-
work situations, applications have been mostly limited to the realm of sociology (e.g.
friendship networks) where data is often gathered using e.g. surveys. By nature, sociolog-
ical data is a different type of data than that generally found in OSS e.g. Git history. For
example, surveys generally have a fixed time point of gathering, which sets the point at
which a “wave” is defined. Differences in the nature of the data should not be an issue the-
oretically, and we have gone through great lengths to ensure our data meets the theoretical
assumptions of SAOM. However, as with any technology applied in a novel domain one
must remain vigilant and perhaps even skeptical about initial results. Whereas modeling
with SIENA has been around long enough for most kinks to have been ironed out, we had to
make a few choices that were imposed by the specifics of our data. In particular, our choice
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for the appropriate length and distribution of panel waves could use a more objective analy-
sis and validation. Likewise for the social interaction decay function, which even though is
literature supported, may depend on the project or even period in the project. And, finally,
the modeling and goodness of fit approaches can benefit from more variance and larger
data sets.
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