
Tool Choice Matters: JavaScript Quality Assurance
Tools and Usage Outcomes in GitHub Projects

David Kavaler
University of California, Davis

dmkavaler@ucdavis.edu

Asher Trockman
University of Evansville

asher.trockman@gmail.com

Bogdan Vasilescu
Carnegie Mellon University

vasilescu@cmu.edu

Vladimir Filkov
University of California, Davis

filkov@cs.ucdavis.edu

Abstract—Quality assurance automation is essential in modern
software development. In practice, this automation is supported
by a multitude of tools that fit different needs and require
developers to make decisions about which tool to choose in a
given context. Data and analytics of the pros and cons can inform
these decisions. Yet, in most cases, there is a dearth of empirical
evidence on the effectiveness of existing practices and tool choices.

We propose a general methodology to model the time-
dependent effect of automation tool choice on four outcomes
of interest: prevalence of issues, code churn, number of pull
requests, and number of contributors, all with a multitude of
controls. On a large data set of npm JavaScript projects, we
extract the adoption events for popular tools in three task
classes: linters, dependency managers, and coverage reporters.
Using mixed methods approaches, we study the reasons for the
adoptions and compare the adoption effects within each class, and
sequential tool adoptions across classes. We find that some tools
within each group are associated with more beneficial outcomes
than others, providing an empirical perspective for the benefits
of each. We also find that the order in which some tools are
implemented is associated with varying outcomes.

I. INTRODUCTION

The persistent refinement and commoditization of software
development tools is making development automation possible
and practically available to all. This democratization is in full
swing: e.g., many GitHub projects run full DevOps continuous
integration (CI) and continuous deployment (CD) pipelines.

What makes all that possible is the public availability of
high-quality tools for any important development task (all
usually free for open-source projects). Linters, dependency
managers, integration and release tools, etc., are typically well
supported with documentation and are ready to be put to use.
Often, there are multiple viable tools for any task. E.g., the
linters ESLint and standardJS both perform static analysis
and style guideline checking to identify potential issues with
written code. This presents developers with welcome options,
but also with choices about which of the tools to use.

Moreover, a viable automation pipeline typically contains
more than one tool, strung together in some order of task
accomplishment, each tool performing one or more of the tasks
at some stage in the process. And the pipelines evolve with
the projects – adding and removing components is part-and-
parcel of modern software development. As shown in Table I,
38, 948 out of 54, 440 projects gathered in our study use at
least one tool from our set of interest; 12, 109 adopt more
than one tool over their lifetime, and 2, 283 projects switch

TABLE I
TOOL ADOPTION SUMMARY STATISTICS

Adoption Events
Across Projects

Tool Task class Per tool Per task class

david Dependency
Management

20, 763
23, 917bithound 900

gemnasium 3, 093

codecov
Coverage

2, 785
15, 249codeclimate 2, 328

coveralls 11, 221

ESLint
Linter

7, 095
12, 886JSHint 2, 876

standardJS 3, 435

Note: 54, 440 total projects under study
38, 948 projects which adopt tools under study

2, 283 projects use different tools in the same task class

from one tool to another which accomplishes a similar task.
Having multiple tools available for the same task increases
the complexity of choosing one and integrating it successfully
and beneficially in a project’s pipeline. What’s more, projects
may have individual, context-specific needs. A problem facing
maintainers, then, is: given a task, or a series of tasks in a
pipeline, which tools to choose to implement that pipeline?

Organizational science, particularly contingency theory [1],
predicts that no one solution will fit all [2], [3]. Unsurprisingly,
general advice on which tools are “best” is rare and industrial
consultants are therefore busy offering DevOps customiza-
tions [4]. At the same time, trace data has been accumulating
from open-source projects, e.g., on GitHub, on the choices
projects have been making while implementing and evolving
their CI pipelines. The comparative data analytics perspective,
then, implores us to consider an alternative approach: given
sufficiently large data sets of CI pipeline traces, can we con-
textualize and quantify the benefit of incorporating a particular
tool in a pipeline?

Here we answer this question using a data-driven,
comparative, contextual approach to customization problems
in development automation pipelines. Starting from a large
dataset of npm JavaScript packages on GitHub, we mined
adoptions of three classes of commonly-used automated
quality assurance tools: linters, dependency managers, and
code coverage tools. Within each class, we explore multiple

tools and distill fundamental differences in their designs
and implementations, e.g., some linters may be designed for
configurability, while others are meant to be used as-is.

Using this data, and informed by qualitative analyses
(Sec. II-B) of issue and pull request (PR) discussions on
GitHub about adopting the different tools, we developed sta-
tistical methods to detect differential effects of using separate
tools within each class on four software maintenance out-
comes: prevalence of issues (as a quality assurance measure),
code churn (as an indication of setup overhead), number of pull
requests (for dependency managers, as an indication of tool
usage overhead), and number of contributors (as an indication
of the attractiveness of the project to developers and the ease
with which they can adapt to project practices). We then
evaluated how different tools accomplishing the same tasks
compare, and if the order in which the tools are implemented
is associated with changes in outcomes. We found that:

• Projects often switch tools within the same task category,
indicating a need for change or that the first tool was not
the best for their pipeline.

• Only some tools within the same category seem to be
generally beneficial for most projects that use them.

• standardJS, coveralls, and david stand out as tools
associated with post-adoption issue prevalence benefits.

• The order in which tools are adopted matters.

II. JAVASCRIPT CONTINUOUS INTEGRATION PIPELINES
WITH DIFFERENT QUALITY ASSURANCE TOOLS

In this work, we study how specific quality assurance
tool usage, tool choice, and the tasks they accomplish are
associated with changes in outcomes of importance to software
engineers, in the context of CI. We focus on CI pipelines
used by JavaScript packages published on npm: JavaScript
is the most popular language on GitHub and npm is the
most popular online registry for JavaScript packages, with
over 500,000 published packages. While there is hardly any
empirical evidence supporting the tool choices, there has been
much research on CI pipelines. We briefly review related prior
work and discuss tool options for our task classes of interest.

A. CI, Tool Configuration, and Tool Integration

CI is a widely-used practice [5], by which all work is
“continuously” compiled, built, and tested; multiple CI tools
exist [6]. The effect of CI adoption on measures of project
success has been studied, with prior work finding beneficial
overall effects [7]. As part of CI pipelines, third party tools
for specific tasks are often used. Though the notion of using a
pre-built solution for common development tasks is attractive,
these tools are often far from being usable off-the-shelf.

Hilton et al. describe multiple issues that developers expe-
rience when configuring and using CI [8], including lack of
support for a desired workflow and lack of tool integration:
developers want powerful and highly configurable systems, yet
simple and easy to use. However, Xu and Zhou [9] find that
over-configurable systems hinder usability. It has also been
shown that developers often don’t use the vast majority of

configuration options available to them [10]. Misconfigurations
have been called “the most urgent but thorny problems in soft-
ware reliability” [11]. In addition, configuration requirements
can change over time as older setups become obsolete, or must
be changed due to, e.g., dependency upgrades [12].

The integration cost for off-the-shelf tools has been long-
studied in computer science [13]–[17]. However, much of this
research is dated prior to the advent of CI and large social-
coding platforms like GitHub. Thus, we believe the topic of
tool integration deserves to be revisited in that setting.

B. Tool Options Within Three Quality Assurance Task Classes

There are often multiples of quality assurance tools to
accomplish the same task, and developers constantly evaluate
and choose between them. E.g., a web search for JavaScript
linters turns up many blog posts discussing options and pros
and cons [18], [19]. We consider sets of tools that offer similar
task functionality as belonging to the same task class of
tools. Specifically, we investigate three task classes commonly-
studied in prior work (e.g., [20]–[22]) and commonly-used in
the JavaScript community: linters, dependency managers, and
code coverage tools.

Below, to better illustrate fundamental differences in tools
within the same task class, and note tradeoffs when choosing
between tools, we intersperse the description of the tools with
links to relevant GitHub discussions. To identify these discus-
sions, we searched for keyword combinations (e.g., “eslint” +
“jshint”) on GitHub using the GitHub API (more details in
Section IV), identifying 47 relevant issue discussion threads
that explicitly discuss combinations of our tools of interest.
One of the authors then reviewed all matches, removed false
positives, and coded all the discussions; the emerging themes
were then discussed and refined by two of the authors.1

Linters. Linters are static analysis tools, commonly used to
enforce a common project-wide coding style, e.g., ending lines
with semicolons. They are also used to detect simple potential
bugs, e.g., not handling errors in callback functions. There has
been interest in the application of such static analysis tools in
open-source projects [23] and CI pipelines [24]. Within npm,
common linters include ESLint, JSHint, and standardJS.
Qualitative analysis of 32 issue threads discussing linters
suggests that project maintainers and contributors are con-
cerned with specific features (16 discussions) and ease of
installation (15), with some recommending specific linters
based on personal preferences or popularity, favoring those
that they have used before without much justification (8), e.g.,
[25]–[27]. Two categories of linters emerge: First, ESLint and
JSHint are both meant to be configured to suit a project’s
specific needs and preferences; among them, ESLint is more
highly configurable as it allows for custom plugins. Second,
standardJS is meant to be a “drop-in” solution to linting: it
is not meant to be further configured.

1Surprisingly, across 38, 948 projects in our data which adopted tools, only
47 issue threads explicitly discuss combinations of our tools of interest. This
relatively low frequency suggests a lack of deliberateness in choosing tools,
which underscores the need for this study, especially given our findings.

ESLint’s high configurability makes it a common choice
(9 discussions [28]–[33]). Ten projects switched to ESLint or
JSHint after using older linters which lack this functionality;
in fact, four view ESLint as a combination of older linters
[31], [34]–[36]. On the other hand, increased configurability
comes with increased overhead, as noted in one discussion:
“ESLint has so many options, [which] often leads to insignif-
icant debates about style... This makes the project harder to
maintain and hinders approachability” [37].

In contrast, standardJS addresses the problem of op-
tionality, encouraging projects to adopt a standard configu-
ration. One developer notes it may be more convenient for
contributors, who are more likely to be familiar with the
“standard” style [38]. However, another developer finds it
less appealing as they “simply don’t agree with those default
settings” [39]. Overall, ten of the found issues included some
form of discussion between contributors and maintainers. This
indicates, at least partly, that some developers are interested
in discussing the pros and cons of linter choice.

Based on these anecdotes, we hypothesize that a complex
project with project-specific code style requirements may be
more likely to use ESLint or JSHint, while a smaller project
may opt for standardJS because it is easier to set up.
While highly configurable tools like ESLint and JSHint

require more effort in configuration, they may nullify disputes
over code formatting and facilitate code review. standardJS
requires less initial effort from project maintainers and may
be appealing to new contributors who are familiar with the
common code style. However, since its adoption likely entailed
less configuration effort, maintainers may need to spend more
time on code review or address more issues about code styling.
Coverage Tools. Coverage tools, executed locally or as part of
a CI pipeline, compute and report code coverage (typically line
coverage), a measure of test suite quality. Popular JavaScript
coverage tools include Istanbul and JSCover. If used as
part of a CI pipeline, the coverage results are often sent to
a third-party service such as coveralls or codeclimate,
which archive historical coverage information and offer dash-
boards. Third-party tools require some additional configuration
over simply using a coverage reporter locally, and may result
in more issues and pull requests as code coverage information
is made available or reacted to by the community.

Out of ten issue discussions about coverage tools, in four
developers talked about not wanting to spend too much time on
configuration [32], [40], [40], [41]. One developer states that
the sole purpose of such a tool is to get the coverage badge,
i.e., to signal that the project cares about test coverage [32]. As
expected, two developers state that they use a certain coverage
tool simply because they are more familiar with it [42], [43].
It seems developers want to invest minimal effort in coverage
services, but seem unaware that some services require more
overhead than others: “a yml config file seems silly when all
that you want is coverage,” states a developer [32].
coveralls and codecov are considered very focused

services, generally providing, as per the issue discussions, only
coverage [32], [40], [44], [45], without additional features.

Two developers claim that coveralls is unreliable [45], [46],
inspiring a switch to codecov, which is said to have a better
user experience [45]. codeclimate provides other services
besides coverage, e.g., linting, and developers may be confused
by its high configurability [32], [45]: “CodeClimate isn’t sure
if it wants to be a CI or not,” states a developer [32].
Dependency Managers. Dependency management services
help keep dependencies up-to-date and secure. They make
the status of dependencies visible to project maintainers,
encouraging updates after new releases through automated
notifications. Dependency management is a popular research
topic [47]–[50]. david, gemnasium, and snyk are examples
of such tools that require manual intervention; their results are
often displayed as badges [21], [51] on a project’s README
file. Greenkeeper, a GitHub bot, provides automatic depen-
dency updates at each new release. It creates a PR with the
updated dependency, which in turn triggers the CI service to
run the build. This allows the project maintainers to immedi-
ately see if an upgrade will incur significant work. If the build
does not break, then it is likely safe to merge the update.
Hence, projects must choose if they would like manual or
automatic dependency upgrades. Intuitively, manual upgrades
may require more work for developers due to upgrading and
testing. However, automatic upgrades increase the number of
PRs to review, and may cause notification fatigue [52].

Dependency managers face similar trade-offs between con-
figurability and ease of use, although we found only five issues
discussing them. Our analysis suggests that developers value
ease of installation, e.g., low configuration overhead, over
other concerns: e.g., one developer prefers david since it’s a
specific, easy-to-install service [53], as opposed to bithound,
which, as another developer notes, provides dependency man-
agement as well as numerous extra features [54].

In summary, most projects decide which tool to select based
on personal preference, popularity, or implementation cost.
However, we find very little explicit discussion of tool choice
within issue discussions, suggesting that tool choice may not
be very deliberate.

III. RESEARCH QUESTIONS

We investigate three main research questions:
RQ1: How often do projects change between tools within

the same task class?
Rationale. GitHub projects have varying needs, and thus

likely require configurable tools. However, given the com-
plexity of tool configuration [8], [10], [55] in general and
the requirement of keeping configurations up-to-date [12],
developers may need to change between tools within a given
task class over time. RQ1 studies the stability of the projects’
quality assurance pipelines.

RQ2: Are there measurable changes, in terms of monthly
churn, pull requests, number of contributors, and issues,
associated with adopting a tool? Are different tools within
an equivalence class associated with different outcomes?

Rationale. Despite great research interest in CI pipelines,
there is a distinct lack of empirical evidence regarding tool

choice and associations with outcomes of interest. Prior work
has shown that there are costs when integrating pre-built tools
in general [13]–[17], but the empirical evidence for differential
costs within task classes is lacking, especially in the choice-
laden GitHub open-source setting. RQ2 focuses on these costs.

To drill into our second research question, we investigate
specific subquestions:

RQ2.1: Is linter tool adoption associated with lower monthly
churn?

Rationale. Prior work has reported that JavaScript devel-
opers use linters primarily to prevent errors [20]. We expect
a decrease in monthly churn after linters start being used,
because the linter may catch issues that would have otherwise
had to be changed after the initial commit.

RQ2.2: Is standardJS associated with more monthly con-
tributors?

Rationale. As discussed in Section II, standardJS is meant
as a “drop-in” solution, implementing standard JavaScript
style guidelines, while ESLint is more customizable but
more complex. Developers’ potential surprise or frustration
with unusual style guidelines may impact how engaged they
remain with a project. Therefore, we expect that other variables
held constant, projects using more standard JavaScript style
guidelines would be more attractive to developers, who, in
turn, may remain engaged longer.

RQ2.3: Are coverage tools associated with immediate over-
head, measured by monthly churn and PRs?

Rationale. Test coverage has been described as important
for software quality [56]. However, achieving full coverage
is difficult [57], and relies on an appropriate test suite. Thus,
we hypothesize that the adoption of a coverage reporting tool
is associated with an immediate overhead cost, as coverage
tools likely require moderate to large infrastructure and test
suite changes to facilitate their reporting.

RQ2.4: Are dependency managers associated with more
monthly churn and PRs?

Rationale. Prior work [21] found that dependency man-
agement is (according to one developer) “one of the most
significantly painful problems with development”. The authors
report that developers identified strategies that can be roughly
categorized as “quick”, “scheduled”, or “reactive”. We note
that the existence of a dependency management tool may not
affect monthly churn and PRs for projects with a “sched-
uled” update policy (i.e., a systematic method for reviewing
dependencies), but may affect those with “quick” or “reactive”
policies, as they are more likely to be sensitive to such a tool’s
warnings; dependencies should be updated, and developers
may do this through PRs, additionally reflected in churn.

RQ2.5: Are the studied tools associated with issue preva-
lence?

Rationale. Since the tools studied are quality assurance
tools, developers may hope that adopting a tool will decrease
the prevalence of reported issues, either right away or over
time. A reduction in the number of issues can give developers
more time to provide new features, maintain existing ones, etc.

If we observe such an association, it can provide evidence for
the argument that, all else being equal, the tool associated with
fewer issues should be adopted.

RQ3: Are certain tool adoption sequences more associ-
ated with changes in our outcomes of interest than others?

Rationale. Lastly, we investigate whether integration cost is
incurred differently given prior tool adoptions. For example,
implementing a coverage tool before a linter may incur less
integration cost than in the opposite order, as coverage tools
are accompanied by large test suites; if there are systematic
issues with a test suite, a linter may point them out. Thus,
if the test suite is not initially written according to a linter’s
guidelines, there may be additional cost associated with inte-
grating a linter as the improper formatting must be fixed.

IV. DATA AND METHODS

Here, we discuss practical matters of data collection, in-
cluding extraction of tool adoption events, task class creation,
negative control data, model building, and interpretation.
A. Data Collection

To determine when projects incorporate linters and coverage
services into their CI pipelines, we downloaded build informa-
tion from Travis CI, the most popular CI service on GitHub.
While such tools may be declared in a project’s .travis.yml
configuration file, they are often delegated to shell scripts, task
runners, Makefiles, or the npm package.json file, making
discovery non-trivial. Hence, instead of scanning repositories
for evidence of tool use, we scan the Travis CI build logs.

Travis CI allows projects to define a build matrix, which
specifies the configuration for numerous jobs. The build matrix
could specify that only one, or more than one jobs involve
running linters or coverage services. Hence, for the 92,479
most popular npm projects we had access to, we queried the
Travis CI API to download build information, e.g., date, status,
and if the build was started via push or pull request, as well
as all associated jobs. This resulted in 7.03 million rows of
build metadata and 18.6 million rows of corresponding jobs.

To determine the time of tool adoption, we downloaded all
associated job logs per project at monthly intervals: it would
have been intractable to download all 18.6 million logs. The
granularity in adoption dates in our data is one build per month
per project. In total, we downloaded logs for 80,558 projects.

We say that a project is using a given tool in a given
month if any of the job logs contain corresponding traces. We
scanned the job logs case insensitively for instances of the tool
names (“eslint”, “jshint”, “standard”, “coveralls”, “codecov”,
“codeclimate”) occurring on lines starting with > or $, i.e.,
lines corresponding to the execution of a command. This
heuristic is necessary, since otherwise we would detect many
false positives, e.g., for projects that include dependencies with
names including “eslint” that do not actually run ESLint as
part of the CI build. The adoption date of a tool is the first
month that has a job log containing an execution of that tool.

Dependency managers, however, are not typically included
in the CI pipeline. Instead, we determine their adoption date
from the corresponding badge on a project’s README [51].

For project-level GitHub measures (e.g., number of com-
mits, number of PRs), we use data from the March 2017 dump
of GHTorrent [58], aggregated monthly, and join this to our
tool adoption data. For our monthly authors outcome, we look
at the authors for all commits in a given month and project,
recording how many are unique. We also mined 1.4 million
issues for 62,548 npm projects from GHTorrent (the remaining
projects had no issues) and the corresponding 5.3 million issue
comments from GHTorrent’s MongoDB raw dataset.

B. Choosing Tools That Do Not Overlap

We want to model both tool adoption and tool switching
within task classes, if it occurs. Identifying precise tool re-
movals from Travis CI job logs is prone to false positives, as
projects may (and according to manual review of our data,
do) move a given tool run outside of the Travis CI job itself,
instead running it as, e.g., a pre-CI job step. The difficulty of
parsing CI job logs has been noted by prior work [59]. Instead,
to infer tool removal, we carefully chose the task classes and
popular (competing) tools within them, which should not be
used simultaneously. Thus, we say that a tool is removed when
another tool within the same task class is adopted. We believe
this is a reasonable decision, as, e.g., we find it unlikely that
a project will use two different linters simultaneously; thus,
the adoption of a new linter likely coincides with the removal
of the old one. This is partially supported by our qualitative
analysis. This assumption affects most data shown in Table I,
therefore we acknowledge it as a threat to validity.

C. On Negative Controls and Interventions

In standard experimental design with intervention, e.g.,
clinical trials, there are often two basic groups: a negative
control group, which receives no intervention, and a treatment
group, which receives an intervention. However, with observed
data as on GitHub, generally these two groups do not exist
a priori; the intervention is observed, rather than induced in
a specific group with proper prior randomization. In order
to view tool adoption as an intervention, we first form an
analogous negative control group; otherwise, our data would
consist of only those projects that receive an intervention.
Lacking a proper negative control reduces statistical power,
as there exists no group to compare to the treatment group.
Thus, our data also consists of projects which do not adopt any
of the tools under study, providing a form of negative control.

D. Time Series Modeling

We use linear mixed-effects regression [60] (LMER) to
measure the relationship between our outcomes (dependent
variables) and our explanatory variables of interest, under the
effect of various controls. LMER can be seen as an extension
of standard ordinary least squares (OLS) linear regression,
allowing for the addition of random effects on top of standard
fixed effects. Fixed effects in an LMER can be interpreted
the same way as coefficients in an OLS regression. Random
effects are used to model (often sparse) factor groupings that
may imply a hierarchy (nesting) within the data, or to control

for multiple observation of the same subjects in time. In OLS
regression, multiple observation can lead to multicollinearity,
which can limit inferential ability [61]. LMER explicitly mod-
els correlation within (and between) random effect groupings,
thus reducing the serious threat of multicollinearity when
modeling longitudinal data using other methods.

In our data, we use a random effect grouping for each
project. Ideally, one would be able to fit a separate OLS
regression to each project, inspecting individual coefficients
to test hypotheses. However, data within project groups are
often sparse, i.e., many projects have too few data points
to model individually in a statistically robust manner. In an
OLS regression, one may attempt to combine data from all
projects, and model project groups as a factor. However, this
approach is also vulnerable to sparsity, for similar reasons.
Thus, random effects (or, e.g., LASSO regression [62]) can be
used as a form of shrinkage. Each random effect group level
is shrunk towards its corresponding “grand mean”, analogous
to standard regularization strategies [63].

One can interpret this as fitting a separate OLS regression
to each project, with a constraint: the project-level intercept
for each individual OLS regression is a deviation from the
mentioned “grand mean”. This is distinctly different than
fitting a standard OLS regression to each project, as this
random-effect constraint allows us to model projects with far
fewer data points than would be allowed when fitting separate
OLS regressions, due to the aforementioned constraint.

We model the effect of tool adoption over time across
GitHub projects for multiple outcomes of interest. To do this,
we use a model design analogous to regression discontinuity
design (RDD) [64], [65] using mixed-effects regression [66].
In this work, we treat each tool adoption event as an interven-
tion, analogous to administering a drug treatment in a clinical
trial. RDD is used to model the extent of a discontinuity in
a group at the moment of intervention, and lasting effects
post-intervention. The assumption is that if an intervention
has no effect on an individual, there would be no significant
discontinuity in the outcome over time; the post-intervention
trajectory would be continuous over the intervention time.
Thus, RDD allows us to assess how much an intervention
changes an outcome of interest immediately and over time
(via change in the trajectory slope). Fig. 1 shows real data
for monthly pull requests, centered at the time of ESLint

adoption. Note the discontinuity at the time of intervention,
which serves as motivation for the applicability of RDD here.

Fig. 2 depicts the four theoretical cases for an intervention in
our model design. Prior to an intervention, there is some trend,
depicted as a dashed line. At the moment of intervention, there
can be a positive or negative immediate effect (discontinuity),
in addition to a positive or negative change in slope. Thus, our
design can be expressed as:

yij = αi + βitimeij + γiinterventionij+

δitime after interventionij + πicontrolsij + εij

where j is a particular project and i indexes the set of
observations for a given project, with the ability to have

0.0

2.5

5.0

−50 −25 0 25

Time, 0−Centered on ESLint Adoption

M
o

n
th

ly
 P

u
ll

R
e

q
u

e
s
ts

Fig. 1. ESLint intervention for PRs, centered at 0, 100 projects sampled. Basic
OLS trajectories fitted before / after intervention shown as dashed lines.

+ Discontinuity, − Slope + Discontinuity, + Slope

− Discontinuity, − Slope − Discontinuity, + Slope

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

2.0

2.5

3.0

3.5

4.0

3

4

5

6

0

1

2

3

2.0

2.5

3.0

3.5

4.0

Time

O
u

tc
o

m
e

Fig. 2. Four theoretical basic cases for longitudinal mixed-effects models
with interventions. Intervention times marked in red.

multiple time-varying controls. Note that we are not limited
to a single intervention as expressed above; we can (and do)
have multiple tool adoption events within the same model.
The timeij variable is measured as months from the start of a
project to the end of our observation period; interventionij is
an indicator for time occurring before (0) or after (1) tool adop-
tions; and time after interventionij is a counter measuring
months since the tool adoption. In mixed-effects regression,
these parameters are aggregated across all groups (projects),
yielding a final coefficient useful for interpretation. This RDD
formulation, along with the usage of mixed-effects regression,
allows for the simultaneous analysis of many projects, all with
varying observation periods (i.e., differing project lifetimes),
with interventions occurring at different points in time (i.e.,
not necessarily aligned). This flexibility allows for complex
and statistically robust analysis, with simple interpretations.

For points before the treatment, holding controls constant,
the resulting regression line has a slope of βi; after the
treatment, βi + δi. The effect of an intervention is measured
as the difference between the two regression values of yij
pre- and post-treatment, equal to γi. This design is used in 9
different models to examine RQ2.

To examine RQ3, we build 3 additional longitudinal models,
with observed tool adoption sequences modeled as a factor,
along with the same controls used in our prior models. The
general form of the model for each outcome of interest is:
yij = αi+βitimeij+κicurrent tool sequenceij+πicontrolsij+εij

where current tool sequenceij is a cumulative factor indicat-
ing what tools have been adopted for a given project until then,
including a random intercept for each project j. E.g., if project
j adopts tool A in month 1, B in month 2, and C in month 4,
with A and C in the same task class, our data would have 4
observations for project j, with a tool sequence of {A, A→B,
A→B, B→C}, where A→B is repeated in month 3 and A is
removed in month 4 as C belongs to the same task class. Using
this formulation, we can analyze whether an association exists
between a given tool sequence and our outcomes of interest. In
both formulations, we include additional fixed effects (multiple
πi estimated) as controls, e.g., project size, popularity, and age.

The idea of variable significance in LMER is greatly de-
bated in statistics, mostly due to the lack of classical asymp-
totic theory as used for inference in, e.g., OLS regression [67]–
[70].2 These issues can be dampened by large sample sizes (as
we have), but not completely avoided. We report significance
using Satterthwaite approximation for denominator degrees
of freedom for regression variable t-tests, implemented using
the lmerTest R library [71]. This is considered a reasonable
approach when sample sizes are large [69].

We account for multicollinearity by considering only fixed-
effect control variables with VIF (variance inflation factor) less
than 5 [61], as having many fixed effects along with a complex
design structure can introduce issues in model estimation. In
addition, LMER is sensitive to extreme-valued parameters, and
having many fixed effects can require heavy re-scaling, making
it difficult to interpret results. To avoid extreme values in the
fixed effects, we log transform the churn variable, which has
high variance. We trim outliers by removing the top 1% of
values in each considered variable to further avoid potential
high-leverage issues.

Due to the large variance in our outcomes of interest, there
is a risk of spurious significant discontinuities; a significant
discontinuity at intervention time may be found due to mere
noise in the signal. Thus, we smooth each outcome using
moving average smoothing, with a window of 3 months.3 In
addition, we remove data for the exact month in which the tool
is adopted. These two steps act to combat the risk of spurious
discontinuities, and should not negatively affect our results as
we are interested in the trend of each outcome over time, rather
than the absolute, high variance value for a particular month.

We report psuedo-R2 values as described by Nakagawa and
Schielzeth [72], called marginal R2 and conditional R2. The
marginal R2 can be interpreted as the variance described by the
fixed effects alone; conditional R2 as the variance described
by both fixed and random effects. As our data set consists of
17, 137 projects after filtering for described issues, we expect

2Examples of this debate abound; listed references are a small sample.
3No discernible difference was found with windows of size 3 to 6.

project-specific idiosyncrasies to play a large part in model fit.
Thus, we expect our marginal R2 to be much lower than our
conditional R2. We perform standard model diagnostic tests
to evaluate model fit [66]; our models pass these tests. As
we build many models, we also perform multiple hypothesis
testing (p-value) correction by the Benjamini and Hochberg
method [73]; this correction balances false positives and false
negatives, unlike the more conservative Bonferroni correction
which aims to lower only false positives. The reported p-values
are the corrected ones.

E. Threats to Validity

If multiple tools are adopted in the same month, we do not
know their ordering. However, we do not believe this is a large
threat, as this happens in only 12% of all tool adoption events.
In addition, as stated in Sect. IV-B, we assume that when a
new tool is adopted in an existing task class, the old tool
is removed. The effect of this assumption is likely small, as
vast majority of projects adopt only one tool in a class. There
is the potential issue of multiple aliases; the same developer
using multiple usernames, which we do not account for. As
our primary interest is at the project level, having multiple
instances of the same person per project will not affect project-
related conclusions.

Recall that we use mixed-effects models. The notion of
goodness-of-fit in these models is highly debated [72], with
many available metrics for assessment [74]–[77]. We note
that our models for RQ2 have relatively low marginal R2

values. However, our conditional R2 are much higher (44.8%
to 58.9%), suggesting appropriate fit when considering project-
level differences. We also note relatively small effect size for
tool interventions and post-intervention slopes. We believe this
is expected, as we have controls for multiple covariates that
have been shown to highly associate with our outcomes; thus,
these controls likely absorb variance that would otherwise
be attributed to tools, leading to smaller effect size for tool
measures. Finally, as with any statistical model, we have the
threat of missing confounds. We attempted to control for
multiple aspects which could affect our outcomes and made a
best-effort to gather data from as many projects as possible.

V. RESULTS AND DISCUSSION

Recall that we are interested in three specific task classes
of tools: linters, dependency managers, and coverage reporters.
Here, we discuss the results of data analysis and model fitting.

A. RQ1: Patterns of Tool Adoption

Table I provides tool adoption summary statistics, per task
class. It shows that some tools dominate in a class, e.g., david,
and that there are numerous adoptions of each tool. Next we
study sequential tool adoptions, i.e., adoption of a tool after
one was already adopted, within the same task class. Fig. 3
depicts per-project adoption sequences with alluvial diagrams.
Specifically, we take the full tool adoption sequence and plot
how many projects “flow” from one tool to the next (x-axis)
in sequential order. The insets depict a “zoomed-in” view of

0

100

200

300

400

500

1 2 3

Linter

1 2 3

0

5000

10000 Tool

eslint

jshint

standard

0

200

400

600

800

1 2 3

Dependency Manager

1 2 3

0

5000

10000

15000

20000

25000

Tool

bithound

david

gemnasium

0

250

500

750

1000

1 2 3

Coverage

1 2 3

0

5000

10000

15000

Sequence Position

Tool

codeclimate

codecov

coveralls

Fig. 3. Alluvial diagrams for per-project adoption sequences for tools within
the same task class. Insets: among projects which changed tools.

the subset of projects which have changed to another tool after
adopting the first one. We augment these empirical results with
findings from our qualitative analysis (Section II-B).

It is apparent that the majority of projects appear to adopt
one tool and stick with it. This may be due to a prevalence of
a “set it and forget it” mentality; developers wish to use a tool
and not have to deal with the additional configuration work of
changing that tool [32], [40]. This is reflected in a statement
by one commenter: “there are too many tools to manage” [78].
It is also possible, though not plausible, that most projects get
their tool choice right, from the start.

We also see that a large number of projects (2,283; Table I)
choose to adopt another tool within the same task class after
their adoption of the first. For linters, among projects which
adopt additional tools (inset figure), most projects first adopt
JSHint, and later ESLint. This could be due to apparent
popular opinion that ESLint does a better job than JSHint

for the same tasks, is more highly configurable, or provides a
superset of features, as evidenced by multiple blog posts [18],

TABLE II
LINTER MODELS

Dependent variable (monthly):
log(Churn + 1) PRs Unique Authors Issues

Coeffs (Err.) Coeffs (Err.) Coeffs (Err.) Coeffs (Err.)

Authors 0.454∗∗∗(0.007) 0.377∗∗∗(0.004) 0.051∗∗∗(0.004)
Commits 0.052∗∗∗(0.001) 0.014∗∗∗(0.000) 0.009∗∗∗(0.000) 0.015∗∗∗(0.000)
PRs −0.077∗∗∗(0.003) 0.067∗∗∗(0.001)
Churn −0.039∗∗∗(0.001) 0.009∗∗∗(0.001)
time −0.049∗∗∗(0.000) 0.010∗∗∗(0.000) −0.005∗∗∗(0.000) 0.013∗∗∗(0.000)
eslint int 0.194∗∗∗(0.026) 0.428∗∗∗(0.015) 0.105∗∗∗(0.006) 0.101∗∗∗(0.018)
eslint after −0.055∗∗∗(0.004) 0.022∗∗∗(0.002) −0.000 (0.001) 0.003 (0.002)
jshint int −0.109∗∗∗(0.031) 0.250∗∗∗(0.018) 0.057∗∗∗(0.007) 0.279∗∗∗(0.021)
jshint after −0.008∗∗∗(0.002) −0.011∗∗∗(0.001) −0.002∗∗∗(0.001) −0.013∗∗∗(0.002)
standard int −0.235∗∗∗(0.038) 0.439∗∗∗(0.022) 0.097∗∗∗(0.009) 0.053∗ (0.026)
standard after −0.044∗∗∗(0.005) 0.031∗∗∗(0.003) 0.004∗∗∗(0.001) −0.010∗∗ (0.003)
Intercept 4.543∗∗∗(0.014) 0.264∗∗∗(0.009) 1.000∗∗∗(0.003) 0.418∗∗∗(0.011)

Marginal R2 21.6% 8.9% 13.0% 2.4%
Conditional R2 54.3% 58.4% 45.0% 56.7%

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

[79], [80] and our qualitative analysis [31], [34]–[36].
For dependency managers, we see that david is the pre-

dominant choice. This may be due to its ease of installa-
tion [53], as compared to, e.g., bithound, which provides
dependency management and many other features [54]. We
also see that among projects which switch from david, there
is a bifurcation in the next tool adopted, between bithound

and gemnasium. We were unable to find any explicit issue
discussions regarding gemnasium to illuminate this switch.

For coverage, we see that coveralls is the most pop-
ular tool by far (11,221 adoptions, compared to 2,328 for
codeclimate and 2,785 for codecov). However, some online
discussions [81]–[83] and issue discussions [45], [46] suggest
that project communities may be starting to favor codecov

due to its superset of features and its direct integration with
GitHub, BitBucket, and other git-related services, and due
to its better support. This is supported by Fig. 3; among
those who switch from coveralls, almost all later move
to codecov. In addition, we see that projects which switch
from codeclimate next adopt either codecov or coveralls
with a fairly even split. This switch may be due to the stated
confusion regarding the wide array of varying features that
codeclimate provides [32], [45]. In summary:

Answer to RQ1: Most projects choose one tool within
a task class and stick to it for their observed lifetime.
However, when projects adopt additional tools within the
same task class, they often move in the same direction as
other projects, e.g., JSHint to ESLint.

B. RQ2: Comparing Tools

Starting from the trace data of tool adoptions, here we
compare the effect of tool adoption on our outcomes of
interest. To examine the effects of each task class individually,
we build a separate set of models for each task class and for
each outcome, resulting in 12 models.

Tables II, III, and IV show our model results for linters,
coverage tools, and dependency managers, respectively. The

int naming convention identifies effects of the intervention;

TABLE III
COVERAGE MODELS

Dependent variable (monthly):
log(Churn + 1) PRs Unique Authors Issues

Coeffs (Err.) Coeffs (Err.) Coeffs (Err.) Coeffs (Err.)

Authors 0.453∗∗∗(0.007) 0.381∗∗∗(0.004) 0.051∗∗∗(0.004)
Commits 0.052∗∗∗(0.001) 0.014∗∗∗(0.000) 0.009∗∗∗(0.000) 0.015∗∗∗(0.000)
PRs −0.077∗∗∗(0.003) 0.068∗∗∗(0.001)
Churn −0.040∗∗∗(0.001) 0.009∗∗∗(0.001)
time −0.048∗∗∗(0.000) 0.011∗∗∗(0.000) −0.005∗∗∗(0.000) 0.014∗∗∗(0.000)
coveralls int −0.131∗∗∗(0.020) 0.289∗∗∗(0.012) 0.102∗∗∗(0.005) 0.128∗∗∗(0.014)
coveralls after −0.027∗∗∗(0.002) 0.003∗∗ (0.001) −0.005∗∗∗(0.001) −0.013∗∗∗(0.001)
codeclimate int 0.185∗∗∗(0.050) 0.124∗∗∗(0.029) 0.068∗∗∗(0.012) 0.037 (0.035)
codeclimate after−0.036∗∗∗(0.005) 0.002 (0.003) −0.007∗∗∗(0.001) −0.005 (0.004)
codecov int 0.257∗∗∗(0.051) 0.452∗∗∗(0.029) 0.173∗∗∗(0.012) −0.029 (0.035)
codecov after −0.101∗∗∗(0.009) 0.032∗∗∗(0.005) −0.002 (0.002) −0.011 (0.006)
Intercept 4.561∗∗∗(0.014) 0.264∗∗∗(0.009) 0.994∗∗∗(0.003) 0.422∗∗∗(0.011)

Marginal R2 21.6% 7.7% 12.7% 2.4%
Conditional R2 54.2% 58.8% 44.8% 56.8%

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

TABLE IV
DEPENDENCY MANAGER MODELS

log(Churn + 1) PRs Unique Authors Issues
Coeffs (Err.) Coeffs (Err.) Coeffs (Err.) Coeffs (Err.)

Authors 0.456∗∗∗(0.007) 0.383∗∗∗(0.004) 0.052∗∗∗(0.004)
Commits 0.052∗∗∗(0.001) 0.014∗∗∗(0.000) 0.009∗∗∗(0.000) 0.015∗∗∗(0.000)
PRs −0.078∗∗∗(0.003) 0.068∗∗∗(0.001)
Churn −0.040∗∗∗(0.001) 0.009∗∗∗(0.001)
time −0.049∗∗∗(0.000) 0.011∗∗∗(0.000) −0.005∗∗∗(0.000) 0.013∗∗∗(0.000)
gemnasium int −0.168∗∗∗(0.043) −0.022 (0.025) 0.048∗∗∗(0.010) 0.061 (0.030)
gemnasium after −0.003 (0.003) 0.009∗∗∗(0.002) 0.001∗ (0.001) −0.001 (0.002)
david int −0.182∗∗∗(0.021) 0.199∗∗∗(0.012) 0.082∗∗∗(0.005) 0.138∗∗∗(0.015)
david after −0.009∗∗∗(0.002) 0.005∗∗∗(0.001) −0.001 (0.000) −0.011∗∗∗(0.001)
bithound int 0.002 (0.107) 0.418∗∗∗(0.061) 0.088∗∗∗(0.026) 0.078 (0.073)
bithound after −0.028∗ (0.014) 0.037∗∗∗(0.008) 0.000 (0.003) −0.014 (0.009)
Intercept 4.567∗∗∗(0.014) 0.289∗∗∗(0.009) 0.998∗∗∗(0.003) 0.415∗∗∗(0.011)

Marginal R2 21.6% 7.1% 12.5% 2.4%
Conditional R2 54.1% 58.9% 44.8% 56.8%

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

after refers to post-intervention slopes. For models with log-
transformed outcomes, coefficients are interpreted as a percent
increase or decrease, e.g., if a variable coefficient is reported
as 0.123, this reflects a e0.123 − 1 = 13.1% increase in the
outcome per unit increase in the given variable. For models
with no transformation of the outcome, a unit increase in
an explanatory variable is associated with the corresponding
coefficient increase in the outcome variable.

1) RQ2.1: Linter Usage vs. Monthly Churn: We find that
the results are mixed in terms of discontinuity in churn:
adopting standardJS is associated with a 20.9% reduc-
tion in monthly churn; JSHint is also associated with a
reduction (10.3%). However, ESLint is associated with a
21.4% increase in monthly churn. This difference might be
explained by ESLint’s higher configurability as compared
to JSHint and standardJS. It is possible that developers
are initially more familiar with “standard” JavaScript coding
practices, but are interested in adding rules to their style
guidelines. Thus, when ESLint is adopted, they must alter
a significant amount of the code base to adhere to these new
rules, seen through increased churn. It is interesting to note
that this potential overhead is referred to by one developer
in our qualitative analysis [37]. However, all post-intervention
slopes are negative, indicating that this initial churn cost for
ESLint is eventually paid (in 4 months, all other variables
held constant), and monthly churn is lowered after the adoption

event. Thus, for churn, our expectation is supported by the
data.

2) RQ2.2: StandardJS vs. Monthly Authors: Here, in ap-
parent contrast to our expectations, we find that adopting
standardJS (0.097) associates with a lower positive in-
tervention discontinuity in the monthly unique authors than
adopting ESLint does (0.105), while higher than JSHint

(0.057). However, when it comes to slope changes, we see
that standardJS is associated with a slight increase in post-
intervention slope (0.004) and ESLint has an insignificant
post-intervention slope coefficient. Thus, though standardJS

is associated with a lower immediate increase in monthly
unique authors than ESLint, after 2 months (all other vari-
ables held constant), the monthly unique authors trend for
standardJS usage will meet that of ESLint, and proceed
to exceed it over time.

We note that JSHint shows a slight negative post-
intervention slope (−0.002). Though the effect is small, our
qualitative findings show that many developers have moved
to prefer ESLint and standardJS over JSHint. Thus, this
negative trend associated with JSHint might be explained by
developers becoming more attracted to alternative options.

3) RQ2.3: Coverage vs. Immediate Overhead: Our results
here are mixed; coveralls is associated with a 12.3%
discontinuous decrease in monthly churn, while codeclimate
(20.3%) and codecov (29.3%) are associated with discontin-
uous increases in monthly churn, all with significant negative
post-intervention slopes.

Our model may be detecting a negative discontinuity for
coveralls due to no controls for prior adopted tools. In
other words, this negative effect may be due to projects which
switch from, e.g., codecov to coveralls. However, we find
this unlikely; the number of projects which switch tools is
low compared to those which stick to their initial choice.
As stated in Section II-B, we have found instances in which
developers explicitly state a lack of trust in coveralls, due to
unreliability. One explanation could be that, upon adoption of
coveralls, knowledgeable and experienced developers may
be immediately driven away, as they have negative opinions of
this tool. This potential departure of top developers would be
reflected by lower monthly churn. The exact reasons behind
this negative discontinuity would likely be best explained by,
e.g., a qualitative study, left to future work.

We see that all three coverage tools are associated with a
discontinuous increase in monthly PRs (coveralls 0.289;
codeclimate 0.124; codecov 0.452), with significant pos-
itive post-intervention slopes for coveralls (0.003) and
codecov (0.032). This could be due to the additional overhead
incurred immediately due to necessary changes in the code
base to interface with a coverage reporter, and further issues
down the line regarding coverage. In summary, our expecta-
tion is mostly supported by the data, with the exception of
coveralls and monthly churn.

4) RQ2.4: Dependency Managers vs. Monthly Churn and
PRs: For monthly churn, surprisingly all significant fitted
discontinuities are negative (gemnasium −15.5%, david

−16.6%), and all significant post-intervention slopes are neg-
ative (david −0.90%, bithound −2.8%). We assumed that
developers listen to dependency manager warnings, and alter
relevant code as a result. However, dependency management
tools may cause developers to suffer from notification fa-
tigue [52], when they issue too many automated warnings.
Such fatigue due to false alarms is a serious issue across many
disciplines [84]–[86]. Thus, prior to adopting a dependency
manager, developers may update dependencies appropriately.
However, upon tool adoption, developers may experience noti-
fication fatigue, causing them to ignore dependency warnings
and thus update dependencies less often than before.

For monthly PRs, we see positive discontinuity coefficients
when significant (david 0.199, bithound 0.418), and sig-
nificant positive post-intervention slopes (gemnasium 0.009,
david 0.199, bithound 0.418). This increase in PRs may
be due specifically to warnings brought forth by the tool, as
expected. However, given potential notification fatigue, this
increase in PRs may be due to individuals having issues with
the new warning proliferation, submitting code to handle this
new problem. Thus, we do not believe this increase in PRs
fully supports our initial expectation. However, investigation
of these findings brought the issue of notification fatigue to
our attention, which may be what our models are actually
detecting for coverage tools. We believe this newly formed
hypothesis is worthy of further investigation.

5) RQ2.5: All Tools vs. Monthly Issues: For all tools with
significant discontinuities, we see positive effects, i.e., a jump
in the number of issues immediately post adoption. Among
the linters, interestingly, the adoption penalty ranges from the
heaviest, for JSHint, 0.279, to the lightest for standardJS,
0.053. For those two, the post-intervention slopes are signif-
icant and negative, indicating a decrease over time, and have
similar values (JSHint −0.013, standardJS −0.010).

Among coverage tools and dependency managers, only two
have significant discontinuities, coveralls 0.128 and david

0.138, respectively. For those two, their post-intervention
slopes are significant, negative, and similar.

This result has nuanced implications. In all significant cases,
tool adoption is associated with an immediate increase in
monthly issues, which may be seen as a negative (especially
for JSHint due to its magnitude). However, with the ex-
ception of ESLint, these tools are associated with negative
post-intervention slopes, suggesting that this initial “cost” of
increased issues turns into a benefit later. This may be due to
the tool itself; e.g., the use of a linter may decrease problems
in the long run. Further (qualitative) research is needed to
investigate the exact reason for this negative slope in time.

In general, our models suggest that tool choice may matter
in terms of our outcomes of interest. In addition, though our
models are observational in nature (being regressions), they
provide practical knowledge - for each task class, effects are
mostly in the same direction for each tool intervention. Thus,
one can draw general conclusions across tools within task
classes with respect to our modeled outcomes. The modeling
methods presented can also be used in a predictive setting; a

developer can provide monthly data for their own project(s)
and identify potential future outcomes given our models.

There are very few instances of explicit discussion regarding
tool choice in GitHub issues. Thus, we suggest that developers
consider tool choice as a reasonable topic of discussion in their
projects moving forward. Our qualitative analysis shows that
developers often struggle with tool choice; decisions are often
ad-hoc. Our models provide another data point to be used
in their decision making process, which may be useful when
coming to a conclusion as to which tool to implement.

Answer to RQ2: We find that there are measurable, but
varied, associations between tool adoption and monthly
churn, PRs, and unique authors for both immediate
discontinuities and post-intervention slopes. We find that
tools within a task class are associated with changes
in outcomes in the same direction, with the exception
of ESLint and coveralls for monthly churn. For
issues, in all significant cases, tools are associated with
a discontinuous increase in monthly issues; however,
all significant post-intervention slopes are negative (de-
creasing issues over time). Regarding issue prevalence,
standardJS, coveralls, and david stand out as tools
with significant and negative post-intervention slopes. We
find that some of our initial expectations regarding tool
adoption are supported, while the investigation of others
brought new hypotheses to light.

C. RQ3: The Order of Tool Adoptions

To examine the potential effects of the sequence of tool
adoptions, we build 3 additional models, described in Sec-
tion IV-D. As there are 152 unique tool adoption sequences in
our data and 161 significant comparisons, for sake of space,
Fig. 4 depicts randomly selected comparison groups for each
outcome of interest. Comparison groups are created by looking
at tool adoption sequences of the same length which are
permutations of each other; e.g., bithound→standardJS

vs. standardJS→bithound. Each bar is a significant es-
timated factor level coefficient, fit by the mixed-effects model
described above; standard error bars are also shown.

In most cases, the direction of the effect is the same across
comparison groups. In addition, in some cases, the difference
between comparison groups is quite small, e.g., david→
codecov→ESLint and david→ESLint→codecov for the
monthly authors model. However, multiple tool sequences
have large relative differences, e.g., david→ESLint→
codecov and codecov→ESLint→david, with a percent
change of 134.26% and absolute change of 0.32 monthly
authors. Further, we see one case in which effects are in
different directions for monthly log churn. There are 5 total
significant cases in which tool sequences have effects in
opposite directions. In summary, we find that there exists
a significant effect of tool adoption order in 161 sequence
comparisons, which could be explained by several reasons.
Perhaps tool integration effort is lower for particular orders as
compared to others; we gave the reasoning behind the case

b
it
h
o
u
n
d
−

>
s
ta

n
d
a
rd

s
ta

n
d
a
rd

−
>

b
it
h
o
u
n
d

c
o
d
e
c
o
v
−

>
js

h
in

t

js
h
in

t−
>

c
o
d
e
c
o
v

c
o
v
e
ra

lls
−

>
d
a
v
id

d
a
v
id

−
>

c
o
v
e
ra

lls

0.0

0.5

1.0

1.5

M
o
n
th

ly
 P

u
ll

R
e
q
u
e
s
ts

c
o
d
e
c
o
v
−

>
d
a
v
id

d
a
v
id

−
>

c
o
d
e
c
o
v

c
o
d
e
c
o
v
−

>
d
a
v
id

−
>

e
s
lin

t
c
o
d
e
c
o
v
−

>
e
s
lin

t−
>

d
a
v
id

d
a
v
id

−
>

c
o
d
e
c
o
v
−

>
e
s
lin

t
d
a
v
id

−
>

e
s
lin

t−
>

c
o
d
e
c
o
v

e
s
lin

t−
>

c
o
d
e
c
o
v
−

>
d
a
v
id

c
o
d
e
c
o
v
−

>
d
a
v
id

−
>

s
ta

n
d
a
rd

d
a
v
id

−
>

s
ta

n
d
a
rd

−
>

c
o
d
e
c
o
v

0.0

0.2

0.4

0.6

Tool sequence

M
o
n
th

ly
 A

u
th

o
rs

c
o
d
e
c
lim

a
te

−
>

e
s
lin

t−
>

d
a
v
id

d
a
v
id

−
>

c
o
d
e
c
lim

a
te

−
>

e
s
lin

t

d
a
v
id

−
>

e
s
lin

t−
>

c
o
d
e
c
lim

a
te

c
o
v
e
ra

lls
−

>
g
e
m

n
a
s
iu

m

g
e
m

n
a
s
iu

m
−

>
c
o
v
e
ra

lls

c
o
v
e
ra

lls
−

>
js

h
in

t

js
h
in

t−
>

c
o
v
e
ra

lls

0

1

M
o
n
th

ly
 L

o
g
 C

h
u
rn

Fig. 4. Randomly selected significant fitted tool sequence factor comparisons.
We compare tool sequences which are permutations of each other.

for linter → coverage vs. coverage→ linter in Section III,
and found a significant example in the data. We note, however,
that other examples of this ordering do not show significant
differences. Alternatively, projects which follow particular
adoption sequences may be inherently different than projects
which adopt the same tools, but in a different sequence, and
these inherent differences are not adequately controlled. In
any case, though effects are small in raw value, this result is
noteworthy as it focuses the effects of tool adoption order, to
our knowledge hitherto not investigated. Future work should
follow this direction to find where such adoption sequences
may matter for other software engineering outcomes.

Answer to RQ3: Some sequences of tool adoptions are
more associated with changes in our outcomes of interest
than others. We find that some tool adoption sequences,
compared to others consisting of the same tools but in a
different order, are associated with changes in opposite
directions.

VI. CONCLUSION

In this study we sought to learn if tool choice matters for
similar projects that have adopted different quality assurance
tools for the same task.

We expected to find much discussion of the pros and cons
of different tools for the same task. On the contrary, very
sparse discussion goes on on GitHub prior to tool adoption,
perhaps because developers do not think it is worthwhile. On
the other hand, we expected to find small if any differences
in outcomes related to tool choice. But this intuition also did
not fully pan out: we found that tool choice matters, and in
some cases significantly, e.g., ESLint and coveralls.

The statistical technology for analyzing longitudinal se-
quences of events also allowed us to consider and asses the
effect of sequential adoption of tools from different categories.
That in turn enabled us to compare adoption sequences of tools
across task categories, and to identify sequences that associate
with more beneficial effects than others. This technology paves
the way for predictive tools to aid projects in improving
or perfecting their automation pipelines, by offering bespoke
advice based on analytics, as in this paper, from similarly
contextualized projects. We encourage future work on this.

REFERENCES

[1] S. W. Richard, “Organizations: Rational, natural, and open systems,”
Aufl., Englewood Cliffs (NJ), 1992.

[2] T. E. Burns and G. M. Stalker, “The management of innovation,” Uni-
versity of Illinois at Urbana-Champaign’s Academy for Entrepreneurial
Leadership Historical Research Reference in Entrepreneurship, 1961.

[3] J. Woodward, Industrial organization: theory and practice. Oxford
University Press, 1965.

[4] Q. Wiki, “Are there any companies focused on doing devops
consulting?” Jul. 2017. [Online]. Available: https://www.quora.com/
Are-there-any-companies-focused-on-doing-DevOps-consulting

[5] G. Gousios, A. Zaidman, M.-A. Storey, and A. Van Deursen, “Work
practices and challenges in pull-based development: the integrator’s per-
spective,” in International Conference on Software Engineering (ICSE).
IEEE, 2015, pp. 358–368.

[6] M. Meyer, “Continuous integration and its tools,” IEEE Software,
vol. 31, no. 3, pp. 14–16, 2014.

[7] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and
productivity outcomes relating to continuous integration in GitHub,” in
Joint Meeting on Foundations of Software Engineering (ESEC/FSE).
ACM, 2015, pp. 805–816.

[8] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, “Trade-offs
in continuous integration: assurance, security, and flexibility,” in Joint
Meeting on Foundations of Software Engineering (ESEC/FSE). ACM,
2017, pp. 197–207.

[9] T. Xu and Y. Zhou, “Systems approaches to tackling configuration errors:
A survey,” ACM Computing Surveys (CSUR), vol. 47, no. 4, p. 70, 2015.

[10] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker, “Hey,
you have given me too many knobs!: Understanding and dealing with
over-designed configuration in system software,” in Joint Meeting on
Foundations of Software Engineering (ESEC/FSE). ACM, 2015, pp.
307–319.

[11] M. Sayagh, N. Kerzazi, and B. Adams, “On cross-stack configuration
errors,” in International Conference on Software Engineering (ICSE).
IEEE, 2017, pp. 255–265.

[12] S. Zhang and M. D. Ernst, “Which configuration option should I
change?” in Proc. International Conference on Software Engineering
(ICSE). ACM, 2014, pp. 152–163.

[13] M. Morisio, C. B. Seaman, A. T. Parra, V. R. Basili, S. E. Kraft, and
S. E. Condon, “Investigating and improving a COTS-based software
development process,” in International Conference on Software Engi-
neering (ICSE). IEEE, 2000, pp. 32–41.

[14] C. Abts, B. W. Boehm, and E. B. Clark, “COCOTS: A COTS software
integration lifecycle cost model-model overview and preliminary data
collection findings,” in ESCOM-SCOPE Conference, 2000, pp. 18–20.

[15] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy, and
R. Selby, “Cost models for future software life cycle processes: CO-
COMO 2.0,” Annals of software engineering, vol. 1, no. 1, pp. 57–94,
1995.

[16] M. Morisio, C. B. Seaman, V. R. Basili, A. T. Parra, S. E. Kraft, and
S. E. Condon, “COTS-based software development: Processes and open
issues,” Journal of Systems and Software, vol. 61, no. 3, pp. 189–199,
2002.

[17] D. Yakimovich, J. M. Bieman, and V. R. Basili, “Software architecture
classification for estimating the cost of COTS integration,” in Interna-
tional Conference on Software Engineering (ICSE). ACM, 1999, pp.
296–302.

[18] J. Hartikainen, “A comparison of javascript linting tools,”
Mar. 2015. [Online]. Available: https://www.sitepoint.com/
comparison-javascript-linting-tools/

[19] D. Sternlicht, “Thoughts about JavaScript linters
and “lint driven development”,” Aug. 2017.
[Online]. Available: https://medium.com/@danielsternlicht/
thoughts-about-javascript-linters-and-lint-driven-development-7c8f17e7e1a0

[20] K. F. Tómasdóttir, M. Aniche, and A. v. Deursen, “Why and how
JavaScript developers use linters,” in International Conference on Auto-
mated Software Engineering (ASE). IEEE, 2017, pp. 578–589.

[21] S. Mirhosseini and C. Parnin, “Can automated pull requests encourage
software developers to upgrade out-of-date dependencies?” in Interna-
tional Conference on Automated Software Engineering (ASE). IEEE,
2017, pp. 84–94.

[22] Q. Yang, J. J. Li, and D. M. Weiss, “A survey of coverage-based testing
tools,” The Computer Journal, vol. 52, no. 5, pp. 589–597, 2009.

[23] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing
the state of static analysis: A large-scale evaluation in open source
software,” in International Conference on Software Analysis, Evolution,
and Reengineering (SANER), vol. 1. IEEE, 2016, pp. 470–481.

[24] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. Di Penta,
“How open source projects use static code analysis tools in continuous
integration pipelines,” in International Conference on Mining Software
Repositories (MSR). IEEE, 2017, pp. 334–344.

[25] papandreou, “Fixed accidentally global ’browserlist var.” https://github.
com/browserslist/browserslist/pull/7, January 2015.

[26] dasilvacontin, “add a more strict linter,” https://github.com/janl/
mustache.js/issues/433, March 2015.

[27] jack guy, “Feature: choose between eslint + airbnb and jshint?” https:
//github.com/feathersjs/generator-feathers/issues/112, April 2016.

[28] valorkin, “Add mocha to mocha environment,” https://github.com/
sindresorhus/globals/issues/34, January 2015.

[29] ——, “added all globals for full jshint compatibility,” https://github.com/
sindresorhus/globals/pull/17, January 2015.

[30] jasonkarns, “Easy require,” https://github.com/sindresorhus/
jshint-stylish/pull/20, May 2015.

[31] seanpdoyle, “Configure hound to lint with jscs,” https://github.com/
ember-cli/ember-cli/issues/5106, November 2015.

[32] jamesplease, “Consider switching to coveralls,” https://github.com/babel/
generator-babel-boilerplate/issues/409, September 2016.

[33] cscott, “Lint source code,” https://github.com/CSSLint/parser-lib/pull/
179, January 2016.

[34] magawac, “Stop using jscs,” https://github.com/caolan/async/issues/
1111, April 2016.

[35] ai, “Csslint + stylelint,” https://github.com/CSSLint/csslint/issues/668,
July 2016.

[36] Herst, “Update link to .jscrc file,” https://github.com/Mottie/tablesorter/
issues/1227, June 2016.

[37] martijnrusschen, “Switch to ESlint (what kind of tooling should we use
for linters),” https://github.com/Hacker0x01/react-datepicker/issues/367,
February 2016.

[38] rtablada, “Add eslint config for standard to project,” https://github.com/
poppinss/adonis-fold/pull/4, July 2016.

[39] emmby, “Use standard.js for code formatting,” https://github.com/
futurice/pepperoni-app-kit/issues/50, June 2016.

[40] henrjk, “feat(travis): add codeclimate integration,” https://github.com/
anvilresearch/connect/pull/275, October 2015.

[41] emmby, “Use standard.js for code formatting,” https://github.com/
futurice/pepperoni-app-kit/issues/50, June 2016.

[42] KrysKruk, “Add code coverage statistics,” https://github.com/Neft-io/
neft/issues/31, April 2016.

[43] yagpo, “Refactorized websocket api,” https://github.com/bitfinexcom/
bitfinex-api-node/pull/6, December 2015.

[44] isaacs, “Breaking change rfc: Remove codecov.io support,” https://
github.com/tapjs/node-tap/issues/270, June 2016.

[45] boneskull, “code coverage in ci,” https://github.com/mochajs/mocha/
issues/2351, July 2016.

[46] ariya, “Integrate codecov.io,” https://github.com/jquery/esprima/issues/
1215, June 2015.

[47] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella, “How
the apache community upgrades dependencies: an evolutionary study,”
Empirical Software Engineering, vol. 20, no. 5, pp. 1275–1317, 2015.

[48] J. Cox, E. Bouwers, M. van Eekelen, and J. Visser, “Measuring depen-
dency freshness in software systems,” in International Conference on
Software Engineering (ICSE). IEEE, 2015, pp. 109–118.

[49] J. Hejderup, “In dependencies we trust: How vulnerable are dependen-
cies in software modules?” 2015.

[50] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do develop-
ers update their library dependencies?” Empirical Software Engineering,
vol. 23, no. 1, pp. 384–417, 2018.

[51] A. Trockman, S. Zhou, C. Kästner, and B. Vasilescu, “Adding sparkle
to social coding: An empirical study of repository badges in the
npm ecosystem,” in International Conference on Software Engineering
(ICSE). ACM, 2018.

[52] M.-A. Storey and A. Zagalsky, “Disrupting developer productivity one
bot at a time,” in International Symposium on Foundations of Software
Engineering (FSE). ACM, 2016, pp. 928–931.

[53] ghaiklor, “Full refactoring,” https://github.com/building5/
sails-hook-bunyan/issues/9, October 2015.

[54] jhwohlgemuth, “Update minimatch version,” https://github.com/
nightwatchjs/nightwatch/pull/1184, September 2016.

https://www.quora.com/Are-there-any-companies-focused-on-doing-DevOps-consulting
https://www.quora.com/Are-there-any-companies-focused-on-doing-DevOps-consulting
https://www.sitepoint.com/comparison-javascript-linting-tools/
https://www.sitepoint.com/comparison-javascript-linting-tools/
https://medium.com/@danielsternlicht/thoughts-about-javascript-linters-and-lint-driven-development-7c8f17e7e1a0
https://medium.com/@danielsternlicht/thoughts-about-javascript-linters-and-lint-driven-development-7c8f17e7e1a0
https://github.com/browserslist/browserslist/pull/7
https://github.com/browserslist/browserslist/pull/7
https://github.com/janl/mustache.js/issues/433
https://github.com/janl/mustache.js/issues/433
https://github.com/feathersjs/generator-feathers/issues/112
https://github.com/feathersjs/generator-feathers/issues/112
https://github.com/sindresorhus/globals/issues/34
https://github.com/sindresorhus/globals/issues/34
https://github.com/sindresorhus/globals/pull/17
https://github.com/sindresorhus/globals/pull/17
https://github.com/sindresorhus/jshint-stylish/pull/20
https://github.com/sindresorhus/jshint-stylish/pull/20
https://github.com/ember-cli/ember-cli/issues/5106
https://github.com/ember-cli/ember-cli/issues/5106
https://github.com/babel/generator-babel-boilerplate/issues/409
https://github.com/babel/generator-babel-boilerplate/issues/409
https://github.com/CSSLint/parser-lib/pull/179
https://github.com/CSSLint/parser-lib/pull/179
https://github.com/caolan/async/issues/1111
https://github.com/caolan/async/issues/1111
https://github.com/CSSLint/csslint/issues/668
https://github.com/Mottie/tablesorter/issues/1227
https://github.com/Mottie/tablesorter/issues/1227
https://github.com/Hacker0x01/react-datepicker/issues/367
https://github.com/poppinss/adonis-fold/pull/4
https://github.com/poppinss/adonis-fold/pull/4
https://github.com/futurice/pepperoni-app-kit/issues/50
https://github.com/futurice/pepperoni-app-kit/issues/50
https://github.com/anvilresearch/connect/pull/275
https://github.com/anvilresearch/connect/pull/275
https://github.com/futurice/pepperoni-app-kit/issues/50
https://github.com/futurice/pepperoni-app-kit/issues/50
https://github.com/Neft-io/neft/issues/31
https://github.com/Neft-io/neft/issues/31
https://github.com/bitfinexcom/bitfinex-api-node/pull/6
https://github.com/bitfinexcom/bitfinex-api-node/pull/6
https://github.com/tapjs/node-tap/issues/270
https://github.com/tapjs/node-tap/issues/270
https://github.com/mochajs/mocha/issues/2351
https://github.com/mochajs/mocha/issues/2351
https://github.com/jquery/esprima/issues/1215
https://github.com/jquery/esprima/issues/1215
https://github.com/building5/sails-hook-bunyan/issues/9
https://github.com/building5/sails-hook-bunyan/issues/9
https://github.com/nightwatchjs/nightwatch/pull/1184
https://github.com/nightwatchjs/nightwatch/pull/1184

[55] M. Sayagh, Z. Dong, A. Andrzejak, and B. Adams, “Does the choice
of configuration framework matter for developers? empirical study on
11 Java configuration frameworks,” in International Working Conference
on Source Code Analysis and Manipulation (SCAM). IEEE, 2017, pp.
41–50.

[56] H. Pham and X. Zhang, “Nhpp software reliability and cost models with
testing coverage,” European Journal of Operational Research, vol. 145,
no. 2, pp. 443–454, 2003.

[57] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing.
John Wiley & Sons, 2011.

[58] G. Gousios and D. Spinellis, “GHTorrent: GitHub’s data from a fire-
hose,” in International Conference on Mining Software Repositories
(MSR). IEEE, 2012, pp. 12–21.

[59] M. Beller, G. Gousios, and A. Zaidman, “TravisTorrent: Synthesizing
Travis CI and GitHub for full-stack research on continuous integration,”
in International Conference on Mining Software Repositories (MSR).
IEEE, 2017, pp. 447–450.

[60] R. H. Baayen, D. J. Davidson, and D. M. Bates, “Mixed-effects modeling
with crossed random effects for subjects and items,” Journal of Memory
and Language, vol. 59, no. 4, pp. 390–412, 2008.

[61] J. Cohen, Applied multiple regression/correlation analysis for the be-
havioral sciences. Lawrence Erlbaum, 2003.

[62] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society. Series B (Methodological), pp.
267–288, 1996.

[63] P. Bühlmann and S. Van De Geer, Statistics for high-dimensional data:
methods, theory and applications. Springer, 2011.

[64] R. Hyman, “Quasi-experimentation: Design and analysis issues for field
settings (book),” Journal of Personality Assessment, vol. 46, no. 1, pp.
96–97, 1982.

[65] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu, “The im-
pact of continuous integration on other software development practices:
a large-scale empirical study,” in International Conference on Automated
Software Engineering (ASE). IEEE, 2017, pp. 60–71.

[66] J. D. Singer and J. B. Willett, Applied longitudinal data analysis:
modeling change and event occurrence. Oxford University Press, 2003.

[67] Z. Feng, T. Braun, and C. McCulloch, “Small sample inference for
clustered data,” in Proceedings of the Second Seattle Symposium in
Biostatistics. Springer, 2004, pp. 71–87.

[68] M. L. Bell and G. K. Grunwald, “Small sample estimation properties
of longitudinal count models,” Journal of Statistical Computation and
Simulation, vol. 81, no. 9, pp. 1067–1079, 2011.

[69] A. Gelman and J. Hill, Data analysis using regression and multi-
level/hierarchical models. Cambridge university press, 2006.

[70] J. C. Pinheiro and D. M. Bates, “Linear mixed-effects models: basic
concepts and examples,” Mixed-effects models in S and S-Plus, pp. 3–
56, 2000.

[71] A. Kuznetsova, P. B. Brockhoff, and R. H. Christensen, “lmertest
package: Tests in linear mixed effects models,” Journal of Statistical
Software, vol. 82, no. 13, pp. 1–26, 2017.

[72] S. Nakagawa and H. Schielzeth, “A general and simple method for
obtaining r2 from generalized linear mixed-effects models,” Methods
in Ecology and Evolution, vol. 4, no. 2, pp. 133–142, 2013.

[73] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate:
a practical and powerful approach to multiple testing,” Journal of the
royal statistical society. Series B (Methodological), pp. 289–300, 1995.

[74] A. Tom, T. A. S. R. J. Bosker, and R. J. Bosker, Multilevel analysis: an
introduction to basic and advanced multilevel modeling. Sage, 1999.

[75] R. Xu, “Measuring explained variation in linear mixed effects models,”
Statistics in medicine, vol. 22, no. 22, pp. 3527–3541, 2003.

[76] H. Liu, Y. Zheng, and J. Shen, “Goodness-of-fit measures of r 2 for
repeated measures mixed effect models,” Journal of Applied Statistics,
vol. 35, no. 10, pp. 1081–1092, 2008.

[77] J. G. Orelien and L. J. Edwards, “Fixed-effect variable selection in
linear mixed models using r2 statistics,” Computational Statistics & Data
Analysis, vol. 52, no. 4, pp. 1896–1907, 2008.

[78] thiagogcm, “[suggestion] greenkeeper,” https://github.com/jhipster/
generator-jhipster/issues/3159, March 2016.

[79] L. Hilsøe, “Linting javascript in 2015,” Jul. 2015. [Online]. Available:
http://tech.lauritz.me/linting-javascript-in-2015/

[80] Slant, “Jshint vs. eslint,” 2018. [Online]. Available: https://www.slant.
co/versus/8627/8628/∼jshint vs eslint

[81] G. jazzband/django-model utils, “Use codecov instead of
coveralls,” Jun. 2015. [Online]. Available: https://github.com/jazzband/
django-model-utils/pull/175

[82] G. chaijs/chai, “Coveralls/coverage badge not working,” Feb. 2017.
[Online]. Available: https://github.com/chaijs/chai/issues/927

[83] G. vavr-io/vavr jackson, “Move code coverage from coveralls.io to
codecov.io,” Nov. 2015. [Online]. Available: https://github.com/vavr-io/
vavr-jackson/issues/14

[84] M. Burdon, B. Lane, and P. von Nessen, “The mandatory notification of
data breaches: Issues arising for australian and eu legal developments,”
Computer Law & Security Review, vol. 26, no. 2, pp. 115–129, 2010.

[85] M. Cvach, “Monitor alarm fatigue: an integrative review,” Biomedical
Instrumentation & Technology, vol. 46, no. 4, pp. 268–277, 2012.

[86] J. Welch, “An evidence-based approach to reduce nuisance alarms
and alarm fatigue,” Biomedical Instrumentation & Technology, vol. 45,
no. s1, pp. 46–52, 2011.

https://github.com/jhipster/generator-jhipster/issues/3159
https://github.com/jhipster/generator-jhipster/issues/3159
http://tech.lauritz.me/linting-javascript-in-2015/
https://www.slant.co/versus/8627/8628/~jshint_vs_eslint
https://www.slant.co/versus/8627/8628/~jshint_vs_eslint
https://github.com/jazzband/django-model-utils/pull/175
https://github.com/jazzband/django-model-utils/pull/175
https://github.com/chaijs/chai/issues/927
https://github.com/vavr-io/vavr-jackson/issues/14
https://github.com/vavr-io/vavr-jackson/issues/14

	Introduction
	JavaScript Continuous Integration Pipelines with Different Quality Assurance Tools
	CI, Tool Configuration, and Tool Integration
	Tool Options Within Three Quality Assurance Task Classes

	Research Questions
	Data and Methods
	Data Collection
	Choosing Tools That Do Not Overlap
	On Negative Controls and Interventions
	Time Series Modeling
	Threats to Validity

	Results and Discussion
	RQ1: Patterns of Tool Adoption
	RQ2: Comparing Tools
	RQ2.1: Linter Usage vs. Monthly Churn
	RQ2.2: StandardJS vs. Monthly Authors
	RQ2.3: Coverage vs. Immediate Overhead
	RQ2.4: Dependency Managers vs. Monthly Churn and PRs
	RQ2.5: All Tools vs. Monthly Issues

	RQ3: The Order of Tool Adoptions

	Conclusion
	References

