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Social Synchrony on Complex Networks
Qi Xuan, Zhi-Yuan Zhang, Chenbo Fu, Hong-Xiang Hu, Vladimir Filkov

Abstract—Social synchrony is an emergent phenomenon in
human society. People often mimic others which, over time, can
result in large groups behaving similarly. Drawing from prior
empirical studies of social synchrony in online communities, here
we propose a discrete network model of social synchrony based on
four attributes: depth of action and breadth of impact, i.e., a large
number of actions are performed with a large group of people
involved; heterogeneity of role, i.e., people of higher degree play
more important roles; and lastly, emergence of phenomenon, i.e.,
it is far from random. We analyze our model both analytically
and with simulations, and find good agreement between the
two. We find this model can well explain the four characters
of social synchrony, and thus hope it can help researchers better
understand human collective behavior.

Index Terms—Synchronization, scale-free network, collective
behavior, social network, significant emergence.

I. INTRODUCTION

SYNCHRONIZATION is an emergent phenomenon present
in many natural and artificial systems. It is mainly under-

stood as an adjustment of the individual rhythms of actors in
the systems due to their coordination with others [1], e.g.,
the flashing of fireflies to aid sexual selection [2] and the
synchronous firing of neurons during cognitive processing [3].
In the past decade, stimulated by the discoveries of small-
world [4] and scale-free [5] features in many natural and
artificial networked systems, a surge of research has been
focusing on the study of synchronization on networks [6],
[7], [8]. The particular focus of much of that work has been
on theoretical approaches to reveal and address how syn-
chronization is coupled to, and perhaps arises from, network
structure. For instance, it has been shown that small-world
or scale-free networks are more easily synchronized than
ER networks [9], [10], [11]. Inversely, Fu et al. [12] found
theoretically that system synchronization can also influence the
network structure, although only in an ideal scenario, with very
strict conditions, making it hard to reproduce practically. E.g.,
theoretically, for a network of coupled oscillators to achieve
global synchronization, the oscillators must be identical, but in
realistic systems, this condition is difficult to achieve. A related
concept to synchronization is consensus [13], [14], [15], [16].
First-order consensus of multi-agent systems [17], [18], [19]
can be thought of as a special case of the synchronization
of coupled complex dynamical systems, where the intrinsic
dynamics of all agents are zero [20].

Here we are interested in a form of synchronization that
occurs in groups of organisms that can communicate and
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mimic behavior; we call it social synchrony. Specifically,
by social, we mean involving groups of humans or other
animals. And by synchrony we mean actions performed close
in time, toward achieving a common goal. A hallmark of
social synchrony is non-trivial, collective dynamic behavior,
characterized by self-organizing activities. Such phenomenon
may have its psychological effects and further lead to the better
accomplishment of certain tasks of significant complexity [21].
We note that the terms synchrony and synchronization are
relatively close, but here we make a distinction: synchrony
represents the state of two or more events occurring at the same
time, while synchronization is more about the coordinated
dynamics of many units to the same timing. Thus, synchrony is
a more specialized form of synchronization, pertaining to tem-
poral coordination. Accordingly, we will use the synchrony,
rather than synchronization, in the main part of paper from
Sec.II, to emphasize that our interests are in temporal social
coordination.

In terms of prior work, group coordination in animals
and humans has been the focus of many studies. For in-
stance, animals moving in groups exhibit various synchronous
patterns, and phenomena like birds flocking [22] and fish
swimming [23] have been studied in detail. To explain move-
ment synchronization in multiplayer scenarios among humans,
Alderisio et al. [24] analyzed a network of non-identical
Rayleigh / van der Pol (RvdP) oscillators interconnected
through either diffusive or nonlinear coupling functions. There,
the boundedness of the error was proven when the oscillators
were coupled diffusively, under the assumption that the net-
work is connected, simple, and undirected. Codrons et al. [25]
found that spontaneous movement within a group was capable
of creating interpersonal synchronization of motor dynamics,
while the mere fact of being in a group prompted individuals
to breathe in a synchronized fashion, even in the absence of
shared movement. Moreover, Alderisio et al. [26] investigated
group synchronization in a human ensemble where partici-
pants were asked to generate and coordinate an oscillatory
hand motion. It was found that the coordination level of the
ensemble depends on the specific way each individual moves
when isolated from the others, and on the pattern of the visual
coupling among group members. They further proposed a
data-driven mathematical model to explain these experimental
observations. Besides, Frank and Richardson [27] introduced a
quantitative approach to detect phase synchronization in noisy
experimental multivariate data and derived a test statistic based
on the Kuramoto order parameter. This provides an objec-
tive way to measure the magnitude of group synchrony and
examine whether and how the magnitude of such synchrony
influences the “social dynamics” of group interaction. More
examples can be found in a recent review on social synchrony
and its benefits [21].
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Although social synchrony is prevalent, large scale data col-
lection and storage technologies have only recently caught up
sufficiently to allow precise modeling. Thanks to advances in
visual recording and tagging technology, GPS, mobile phone,
and the Internet, we now have unprecedented opportunities
to record and consequently study the dynamics of animal
and human behavior. Recently, Lukeman et al. [28] used
digital cameras to collect individual position, velocity, and
trajectory of flocks of hundreds of surf scoters, based on which
they revealed a distinct, concentric structure in positioning, a
preference for neighbors directly in front, and strong alignment
with neighbors on each side. Nagy et al. [29], on the other
hand, used GPS devices to get the flight trajectories of pigeons
and found a well-defined hierarchical structure among flock
members. Song et al. [30] utilized mobile phones to collect
human location in real time, and found that human mobility
patterns are highly predictable; while Xuan et al. [31] collected
developer commit behaviors in Apache software foundation
and found recurring work patterns among software developers.
They found that developers tend to shift focus along with
software dependency links described by the call graphs and
this tendency appears stronger with more productive develop-
ers. Choudhury et al. [32] defined social synchrony as the
tendency of a large number of people to perform similar
actions in unison, in response to a contextual trigger. They
studied how humans mimic others, on the popular social media
site Digg, and developed an evolution framework to predict
social synchrony. More recently, Xuan and Filkov [33] defined
synchronous software development for developers who are
spatially separated. They found that developers may exhibit
higher programming efficiency when they synchronize their
code changes with others, which can results in project size
increase despite the decreased coding effort.

Thanks to the Internet, and specifically to the social web,
it has become a straightforward task to gather and mine com-
prehensive, big-data, data sets, about online social synchrony
of people. Not surprisingly, this has resulted in an explosion
of studies of social web phenomena [34], [35], [36], some
on social synchrony [32], [33], [37]. However, most of the
latter are empirical rather than theoretical, i.e., they reveal
that real social synchrony phenomena exist, as observed in the
collected data, but largely do not provide models to explain
them. Choudhury et al. [32] developed a Dynamic Bayesian
Network (DBN) model that includes an understanding of user
context to predict the probability of user actions over a set
of time slices into the future, and further to predict, rather
than explain, the social synchrony, in a particular case. Zhao
et al. [37] proposed a discrete model to investigate the rela-
tionship between the tie strength and information propagation
in online social networks, and focused on evaluating different
information propagation strategies. More recently, Alderisio et
al. [38] designed a model-based method to study coordination
in human ensembles via a computer-based set-up that enables
individuals to coordinate each other’s motion from a distance,
which provides a good platform to investigate particular online
social synchrony under a controllable environment.

In this paper, we aim to study online social synchrony in a
more systematic way. Motivated by current empirical studies,

we attempt to summarize typical properties exhibited by
an online social synchrony phenomenon; then operationalize
these properties by defining measures for them; and finally
propose a mathematical model for social synchrony based
on those measures. The rest of the paper is organized as
follows. In Sec. II, we summarize the four typical properties
of observed social synchrony phenomena, based on recent
empirical studies. In Sec. III, we propose a theoretical model
to explain the observed properties of social synchrony, and
do a series of theoretical analysis. In Sec. IV, we give a
corresponding numerical model, and validate the theoretical
results by simulations. We conclude the paper in Sec. V.

II. ATTRIBUTES OF SOCIAL SYNCHRONY

Various characteristics of social synchrony are noted as typ-
ical, or important, across a number of empirical studies [21],
[32], [33]. Next, we identify those characteristics, and accept
them as the attributes, or dimensions along which we will
study social synchrony.

1) Depth of action The number of actions taken in a
period of time. Choudhury et al. [32] found that users
on the social blogging site Digg may continually ”dig”
news stories on a topic, and Xuan et al. [31] found
that a developer in Apache software foundation may
continually commit to certain files of a software, over a
period of time.

2) Breadth of impact The number of active people in-
volved in a period of time. Choudhury et al. [32] found
that the continued participation of old users can impact a
large number of new users in the network to participate
as well.

3) Heterogeneity of role People of higher degree in a
social network triggering wider social synchrony, in
terms of larger number of actions, and they themselves
also taking more actions, in a period of time. Choudhury
et al. [32] found that users of higher degree as seeds
are more likely to trigger social synchrony. We studied
the relationship between the number of commit actions
and the degree k for a developer in the social coding
network of GitHub, and found that it can be well fitted
by a linear function, 1 as shown in Fig. 1. The slope of
the fitting line is about 5.5, indicating that on average, a
developer will take 5.5 more commits when he/she gets
1 more social link in GitHub. There are two exceptions
with rather huge residuals, i.e., when k is equal to 80 and
85. We checked the developers with these two particular
degrees and found two outstanding contributors: Dave
Abrahams, with degree 80, delineated a theory of excep-
tions, sit on the C++ Standards Committee, is a founding
member of Boost. He made 30131 commits in four

1GitHub is a well-known OSS community. The data set was collected on
October 12, 2013, and the social network was constructed by the following
links between the developers. We get the mean value of the number of commits
for the developers of the same degree in the social network, and then regress it
against the degree. The Pearson correlation coefficient [39] between the two,
defined as their covariance divided by the product of their standard deviations,
equals to 0.91, indicating a statistically significant linear correlation between
them. Note that here we only consider the developers with degree smaller or
equal to 100, which take up about 99% of all developers in GitHub.
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RMSE: 74.94
R−square: 0.82
Adjusted R−square: 0.82

Fig. 1. (Top) The relationship between the number of commit actions and
the degree k for a developer in the social network of GitHub, which is well
fitted by a linear function. (Bottom) The residuals of the fit.

years; Brain Chan, with degree 85, is the founder and
chief developer of Liferay. He made 49929 commits in
three years. When they are removed, the average number
of commits made by the developers with degree 80 drops
from 777.0 to 540.3; and that made by the developers
with degree 85 drops from 1058.0 to 548.9. Meanwhile,
the linear fit gets much better in this case, i.e., for
the goodness of fit, Root Mean Square Error (RMSE)
decreases from 74.94 to 47.43, while R-square (the
square of Pearson correlation coefficient) and adjusted
R-square both increase from 0.82 to 0.91.

4) Emergence of phenomenon Significantly more actions
occurring in a period of time than given by chance.
When we refer to social synchrony, we always consider
it as a significant emergence, which is different from a
random phenomenon. Xuan and Filkov [33] identified
significantly more bursts of synchronous development
in reality, by comparing with a null model, where
the commit activities for each developer are randomly
redistributed.

When posited along those four dimensions, social syn-
chrony, while sufficiently different, is somewhat related to a
number of different concepts, e.g., network epidemiology [40],
[41], [42], information flow [43], [44], social cascades [45],
[46], social correlation [47], and social recommendation [48],
[49], when we interpret action as being infected, transferring
information, or buying product etc. It is also tangentially re-
lated to opinion formation on social networks, which has been
extensively studied recently. E.g., Huang et al. [50] introduced
a simple model to study opinion formation on networks with
community structure, and found that a community may persist
and never be assimilated when its cohesion reaches a certain
level. They further studied a minority’s opinion evolution in
this setting [51], where majority rule is applied to govern the

evolution, and found that a larger group size would bring more
advantage to the minority. Moreover, Qian et al. [52] proposed
an adaptive bridge control strategy, calling for controlling a
special kind of nodes named bridge without any global or
local knowledge, and found that the efficiency of this strategy
is closely related with the clustering coefficient.

In the following, we will propose a mathematical model for
social synchrony around the above four attributes, based on
which we will provide rigorous measures, and then analyze
the model both theoretically and numerically.

III. THEORETICAL ANALYSIS

A complex network can be represented by a graph G =
(V,E) with nodes V = {v1, v2, . . . , vN} and links E ⊂
V × V . In the network, a node can be either active or
inactive. Our discrete social synchrony (SS) model can then
be described as follows.

Discrete SS Model: At time step t+ 1, a node in the
network G is either spontaneously active with probability
β, or it is activated (or stimulated) with probability α by
one of its neighbors that were active at time step t.

Suppose that node vi is active at time step t with probability
pi(t), then the probability that it is active at time step t+ 1 is
given by:

pi(t+ 1) = 1− (1− β)
∏
vj∈πi

[1− αpj(t)] , (1)

where πi is the set of neighbors of node vi. Different from
the information propagation model in [37], here a node can
be either active or inactive at each time step, which is fully
determined by the active probability presented in Eq (1). In
practice, we find that α is quite small, which can help to
simplify this model, as we describe next.

To motivate the model simplification, we take Open Source
Software (OSS) development as an example. Typically, there
are a number of developers in a project, and each devel-
oper may commit to different files at different times. Two
developers can be considered to program synchronously if
they commit to the same files close in time [33]. Suppose
a developer committed to a set of files, F , at time t, and there
are h other developers, each of whom committed to at least
one file in F in the short time interval [t, t+ ∆]. Here, ∆ can
be considered as the time interval between two successive time
steps above. Then, denoting by H the number of developers
in the project before t+ ∆, the stimulated probability at time
t can be approximated as

α =
h

H − 1
, (2)

since all developers in an OSS project can be considered fully
connected to each other, i.e., every commit is visible to all
developers. Then, we can get the average stimulated probabil-
ity α for the whole project by considering all commit actions.
E.g., for the 31 OSS projects in our data set [33], [53] (avail-
able via Figshare at: https://dx.doi.org/10.6084/m9.figshare.

https://dx.doi.org/10.6084/m9.figshare.3181555
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3181555), on average, we get α = 0.0021, 0.0081, 0.0117 for
time intervals ∆ = 1, 5, 10 (days), respectively. For ∆ = 1
(day), we mean a developer is stimulated by another if they
committed to at least one same file within one day. This result
suggests that first, in reality, the stimulated probability α is
indeed very small; and second we can get a smaller α by
considering shorter time intervals, i.e., the chance to observe
the actions of different individuals in a short period of time
is rather small. Thus, by choosing a sufficiently small time
interval between two successive time steps and setting it as
the unit time, Eq. (1) can be simplified to

pi(t+ 1) = 1− (1− β)

1− α
∑
vj∈πi

pj(t)


= η

∑
vj∈πi

pj(t) + β, (3)

with η = α(1− β). Note that, based on Eq. (3), pi is smaller
than 1 only when α is small enough and β is smaller than 1.
Assuming no degree correlation between linked nodes, we can
use mean-field theory to transform the node presentation into
a degree presentation [54], [55], [56]. Then, Eq. (3) becomes

ρk(t+ 1) = ηkρ(t) + β. (4)

where ρk is the average active probability of nodes with degree
k and ρ is the average active probability of all the nodes in
the network. Denoting by P (k) the degree distribution of the
network, multiplying Eq. (4) by P (k) and then summing it
over degree k, we obtain

ρ(t+ 1) = η〈k〉ρ(t) + β. (5)

Subtracting ρ(t) from both sides yields

ρ(t+ 1)− ρ(t) = (η〈k〉 − 1)ρ(t) + β. (6)

From this, we can derive the dynamics of the active probability
in the whole network:

ρ̇(t) = (η〈k〉 − 1)ρ(t) + β, (7)

under the assumption that the time interval between the two
successive time steps is small enough and is set as the unit
time [57]. By solving this linear differential equation, given
the initial state ρ(0), we get

ρ(t) =

[
ρ(0)− β

1− η〈k〉

]
e−(1−η〈k〉)t +

β

1− η〈k〉
. (8)

Remark 1: Our model can be generalized by considering
different spontaneous and stimulated probabilities for different
nodes and links, respectively. Denoting by βi the spontaneous
probability of node vi, and by αji its stimulated probability by
neighbor vj . Without loss of generality, we introduce weights
on the links and set αij = αwij . Then, Eq (1) changes to

pi(t+ 1) = 1− (1− βi)
∏
vj∈~πi

[1− αwjipj(t)] , (9)

where ~πi is the set of incoming neighbors of node vi. Under
the same assumption that the stimulated probabilities are small

enough, Eq (9) can be simplified to

pi(t+ 1) = ηi
∑
vj∈~πi

wjipj(t) + βi, (10)

with ηi = α(1− βi). If we set

β ≡
∑N
i=1 βi
N

, (11)

and assume that there is no incoming weighted degree correla-
tion between linked nodes [55], and also that the spontaneous
probability βi is uncorrelated with the weighted degree of node
vi, corresponding to Eq. (4), we have

ρw(t+ 1) = ηwρ(t) + β, (12)

where ρw is the average active probability of nodes with
incoming weighted degree w, and η = α(1 − β). Here,
the incoming weighted degree of a node is defined as the
sum of the weights of its incoming links. Denoting by P (w)
the incoming weighted degree distribution of the network,
multiplying Eq. (12) by P (w) and then summing it over
incoming weighted degree w, we obtain

ρ(t+ 1) = η〈w〉ρ(t) + β. (13)

This is similar to Eq. (5), except that the average degree,
〈k〉, is replaced by the average incoming weighted degree,
〈w〉, in Eq. (13). Thus, since most of the equations in the
following exposition are based on Eqs. (4) and (5), to get the
corresponding results for the situation where the spontaneous
and stimulated probabilities vary for different nodes and links,
we just need to replace k by w.

A. Depth of Action

Social synchrony is a temporal phenomenon, and intuitively
its effect can be characterized by the number of actions ϕ(T )
in a period of time T , which we call depth of action. It can
be estimated by

ϕ(T ) =

∫ T

t=0

Nρ(t)dt

= N

[
ρ(0)− β

1− η〈k〉

]
1− e−(1−η〈k〉)T

1− η〈k〉

+
β

1− η〈k〉
NT. (14)

Remark 2: In Eq. (14), ρ(t) is the average active probability
of all the nodes in the network at time t. Since there are a total
of N nodes in the network, Nρ(t) represents the number of
actions in the whole network at time t, and the integration
of which, i.e., ϕ(T ), thus means the total number of actions
in the whole network over a period of time T . As we can
see, the first term of Eq. (14) is largely determined by ρ(0)
and the increasing ratio decays exponentially with time when
η〈k〉 < 1, while the second term increases with time linearly.
In other words, over time, the effect of the initial active
probability on depth of action will diminish quickly, and the
number of actions on the network will be mainly determined
by the spontaneous and stimulated probabilities β and α, the
network size N , and the average degree 〈k〉 in the second

https://dx.doi.org/10.6084/m9.figshare.3181555
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term of Eq. (14), when the observed time T is long enough.
Note that the effect of ρ(0) may be quite significant if we only
focus on the initial short time period.

It is interesting and helpful to consider two extreme cases,
i.e., α = 0, β > 0 and α > 0, β = 0. When α = 0 and β > 0,
η = 0, and the active probability of a node at the next time
step will not be influenced by the current active probabilities
of its neighbors, which means that all nodes in the network are
independent from each other, i.e., our social synchrony model
degenerates into a random model. Eqs. (5) and (14) become

ρ(t) = β, t ≥ 1, (15)
ϕ(T ) = Nρ(0) + βN(T − 1). (16)

Eq. (16) is an intuitive result in this case: the total number
of actions in the network is proportional to the spontaneous
probability, the network size, and the length of observation
time.

On the other hand, when α > 0 and β = 0, η = α(1−β) =
α, and the active probability of a node at the next time step
is fully determined by the current active probabilities of its
neighbors, i.e., information diffusion dominates the dynamics
and there is no spontaneous actions on the network. Eqs. (8)
and (14) become

ρ(t) = ρ(0)e−(1−α〈k〉)t, (17)

ϕ(T ) = Nρ(0)
1− e−(1−α〈k〉)T

1− α〈k〉
. (18)

Eq. (17) indicates that, in this case, there is a critical point,
αc, for the stimulated probability, αc = 1/〈k〉, below which
the activity of the network will die out with time and, based
on Eq. (18), there is a limited total number of actions, as
estimated by

ϕ(∞) =
Nρ(0)

1− α〈k〉
. (19)

Based on Eq. (5), we can find that the average active
probability of the nodes in the whole network is always larger
than β when α > 0, indicating that the action of an individual
is stimulated by the actions of its neighbors in this case.
On the other hand, it is always smaller than β if α < 0, 2

meaning the action of an individual is inhibited by the actions
of its neighbors. Note that, in a social network, different links
may play different roles in social synchrony and information
diffusion. That is, the action of an individual can be either
stimulated or inhibited by the actions of its neighbors, and
thus, it is also very interesting to study social synchrony on
a layered network with different kinds of links. In this paper,
however, we only consider the case when α > 0, which is
the reason why we observe significantly more bursts of social
synchrony in reality than by chance.

B. Breadth of Impact

In order to investigate the sphere of influence of a social
synchrony on a network, it is also important to estimate the

2As a probability, of course α cannot be smaller than zero, but we can still
make an analogy, i.e., negative α makes the neighboring nodes inhibit, rather
than stimulate, each other.

breadth of impact, i.e., the number of active nodes φ(T ), in a
period of time T .

Firstly, the mean active probability of a node with degree k
at each time point in a period T can be calculated by

ϑk,T =
1

T

∫ T

0

ρk(t)dt

=
1

T

[
ρ(0) + ηk

∫ T−1

0

ρ(t)dt+ β(T − 1)

]

=
1

T

[
ρ(0) + β(T − 1) +

ηkϕ(T − 1)

N

]
(20)

Then, the breadth φ(T ) during a period T , can be estimated
by

φ(T ) ≈ N
∑
k

P (k)fT (ϑk,T ), (21)

where fT (x) is a probability function defined as

fT (x) = 1− (1− x)T , (22)

and denotes the probability that a node is active at least once
in the period T , assuming its probability of being active at
any time equals to x.

Remark 3: As defined in Eq. (20), ϑk,T is the mean active
probability of a node with degree k at each time in a period T ,
thus 1−ϑk,T represents the mean probability of the node being
inactive at each time in this period. Then, (1−ϑk,T )T means
the probability of the node being inactive in this whole period.
So, fT (ϑk,T ) in Eq. (21) denotes the probability that the node
with degree k is active at least once in the period T . Since
there are total NP (k) nodes having degree k in the network,
the number of active nodes of degree k can be estimated by
NP (k)fT (ϑk,T ). Therefore, φ(T ) is fully defined by Eq. (21),
and given a network, can be used to estimate the total number
of active nodes in it over a time period T .

C. Heterogeneity of Role

Different nodes and links may play quite different roles
in network dynamics [58], [59], [60], [61], [62], especially
in heterogeneous and modular networks. Therefore, it is also
very interesting to theoretically study if nodes of different
degrees may play different roles in social synchrony, i.e., study
heterogeneity of role.

To motivate, we have found, e.g., that software developers
of higher degree in the social coding network of GitHub also
contribute more code changes (commits) there, as evidence
by the linear relationship in Fig. 1. This is consistent with our
current model, in particular the node activity versus degree
relationship in Eq. (4), where it is theoretically shown that the
active probability of a node is in proportion to its degree k
in the network. This is the starting point of our connection
between social synchrony and centrality.

Choudhury et al. [32] found that users of higher degree as
seeds are more likely to trigger social synchrony, which can
be shown to be consistent with our model, as follows. We
consider the special case when α > 0 and β = 0. Suppose the
event is initialized by a node with degree k and there is no
degree correlation between linked nodes, then each neighbor
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of the node is active with probability α, and, on average, there
will be αk active nodes, at the next time step, i.e., we have
ρ(1) = αk/N . From this time step on, Eqs (17) and (18)
become

ρ(t) =
αk

N
e−(1−α〈k〉)(t−1), (23)

ϕ(T ) = αk
1− e−(1−α〈k〉)(T−1)

1− α〈k〉
+ 1, (24)

respectively.
Remark 4: In Eqs (23) and (24), the stimulated probability

α, network size N , and the average degree 〈k〉 are all con-
stants. Thus, as we can see, both the average active probability
of the network and the total number of actions in the period
of time T are in proportion to the degree k of the node that
initializes the event. In other words, it can be theoretically
shown that, based on our model, hub nodes of higher degree
play more important roles in the process and can enable larger-
scale social synchrony.

D. Emergence of Phenomenon

Given an empirical data set, to test whether an observed
pattern is a significant emergence, rather than a random
phenomenon, we need to create a baseline, or a null model,
of the pattern occurring purely by chance [33], [63]. From
those null models, a corresponding simulated data set can be
generated and the prevalence of the pattern in question can be
then contrasted between the empirical and the simulated data,
using an appropriate significance statistic, e.g., their relative
difference. We and others have previously observed that social
synchrony is a significant emergence [21], [32], [33]. Here
we seek to derive the emergence of phenomenon for a social
synchrony theoretically, from our statistical model, and focus
on the dimension of social synchrony depth.

Assuming we have observed a system for a long time, i.e.,
T → ∞, then, according to Eq. (14), the total number of
actions in this period is close to

ϕ(T ) = N

[
ρ(0)− β

1− η〈k〉

]
1

1− η〈k〉
+

β

1− η〈k〉
NT.

(25)
Note that ϕ(T ) is a linear function of T , i.e., ϕ(T ) → ∞
as T → ∞. Hence, we don’t let T → ∞ in reality, and just
assign it with a large enough number. In a null model, these
actions will be uniformly distributed in the time period T .
Thus, the number of actions in a short time period θ(θ � T )
in the null model can be estimated by

ϕo(θ) =
θ

T
ϕ(T )

=
Nθ

T

[
ρ(0)− β

1− η〈k〉

]
1

1− η〈k〉

+
β

1− η〈k〉
Nθ. (26)

When T is large enough, the first term of Eq. (26) can be
ignored, and thus it can be further simplified to

ϕo(θ) =
β

1− η〈k〉
Nθ. (27)

On the other hand, in our model, according to Eq. (14), we
can get the number of actions in this short period of time by
replacing T with θ.

To measure the distance of a prediction of our model to
that of the null model, given same parameters, we choose the
relative difference between them as our index of significant
emergence:

χ(θ) =
ϕ(θ)− ϕo(θ)

ϕo(θ)
. (28)

In theory, based on Eqs. (14), (27), and (28), we have

χ(θ) =

[
ρ(0)

β
− 1

(1− η〈k〉)

]
1− e−(1−η〈k〉)θ

θ
. (29)

Remark 5: Generally, the index defined by Eq. (29) is a
decreasing function of the spontaneous probability β and the
length of the time period θ, which is reasonable if we consider
that increasing each of these two parameters may result in
more random spontaneous actions being included in this time
period, and thus may decrease the significant emergence index,
which is mainly determined by the ratio of neighborhood
diffusive actions over the random spontaneous ones. When
η〈k〉 is much smaller than one and the spontaneous probability
β is extremely small, changing α will not influence the
significant emergence index much. The more interesting case
is when η → 1/〈k〉. In this case, we get

1− e−(1−η〈k〉)θ

θ
∼ 1− [1− (1− η〈k〉)θ]

θ
∼ 1− η〈k〉 (30)

Substituting Eq. (30) into Eq. (29), we have

χ(θ) ∼ (1− η〈k〉)ρ(0)

β
− 1, (31)

which indicates that social synchrony depth becomes less of a
significant emergence as η further increases. This is because,
in this case, the actions are very dense on the time axis,
i.e., there are actions at almost each time step, and thus their
random redistribution is no different than the distribution of
the empirical observations.

IV. DISCRETE MODEL AND SIMULATION RESULTS

In this part, we conduct four experiments to study the degree
to which our analytic approximations derived above agree with
simulations of our discrete SS model in Sect. III.

We use a generative network model proposed by Catan-
zaro et al. [64] to generate uncorrelated random scale-free
networks, with degree distribution satisfying P (k) ∼ k−γ .
This network model has three parameters, the network size
N , minimum degree kmin, and exponent γ.

We carry out the discrete SS model simulations using a
Monte Carlo method, as follows:

1) Initialization. A network G is given. Nρ(0) of nodes in
the network are active at time t = 0.

2) Neighboring effect. At every time t, each active node at
time t−1 has an equal effect on its neighbors, i.e., they
become active at time t with probability α. As a result,
the more active neighbors a node has at time t− 1, the
higher its probability of becoming active.
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Fig. 2. The scale-free network generated by Catanzaro et al.’s model with
parameters N = 100, kmin = 2, and γ = 2.

3) Spontaneous activity. After the above step, at each time
t, each inactive node will become active spontaneously
with probability β.

Note that the probability that a node is active at time t can
be calculated by Eq. (1), which must be smaller than 1 (since
both α and β are smaller than 1).
Experiment 1: In this experiment, we focus on depth of
action. First, we generate a network, as described above, with
parameters N = 100, kmin = 2, and γ = 2, shown in Fig. 2.
Then, we get the analytic and simulated values for ϕ(T ) with
ρ(0) = 0.1 (10 nodes are randomly chosen as active nodes
initially) and T = 100, for α varying from 0 to 0.25 and
β from 0 to 0.1. For the analytic values we use Eq. (14).
For the simulated values we implement the above discrete
model on the same network for 50 rounds, and then use the
mean value of ϕ(T ). Note that in the discrete model, at each
time step, each node is either active or inactive, and we count
the number of active nodes. Then, we aggregate the numbers
over T = 100 time steps and take those as the simulated
value of the depth ϕ(T ) in a single round. Recall that almost
all our analytic results are based on the assumption that the
stimulated probability α is very small. Therefore, we choose
α to range from 0 to 0.25, since 0.25 is large enough to show
any difference between the analytic and simulated results. On
the other hand, we do not have such restriction on β, i.e., the
values for β are chosen arbitrarily, and we find that the analytic
and simulated results still match well even for β ≥ 0.9 in this
experiment. For the second and fourth experiments, as we will
see, the analytic and simulated values do not change much as
β further increases from 0.1, while for the third experiment,
we just set β = 0 to precisely observe the social synchrony
stimulated by a single node.

Fig. 3 (Top) shows the analytic and simulated values of
ϕ(T ) as functions of the stimulated and spontaneous prob-
abilities α and β. To compare the two, let YA(α, β) and
YS(α, β) denote the analytic and simulated values for α and
β, respectively. The relative difference between YA(α, β) and
YS(α, β) is given by

ε(α, β) =

∣∣∣∣YA(α, β)− YS(α, β)

YA(α, β)

∣∣∣∣× 100%, (32)

and is shown in Fig. 3 (Bottom) as a color map. We also
calculate an average relative difference, over all Nα,β cases

0

0.05

0.1

0.15

0.2

0.25 0

0.02

0.04

0.06

0.08

0.1

0

500

1000

1500

2000

2500

3000

β
α

ϕ
(T

)

Simulated

Analytic

α

β

 

 

0 0.05 0.1 0.15 0.2 0.25

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.2

0.4

0.6

0.8

1

1.2

Fig. 3. (Top) The analytic and simulated values of the depth ϕ(T ) for a
social synchrony as functions of stimulated and spontaneous probabilities α
and β. (Bottom) The color map for the relative difference ε between analytic
and simulated values of depth as a function of α and β.

of different (α, β), as

ε =

∑
α,β ε(α, β)

Nα,β
. (33)

In this experiment, we have Nα,β = 81 cases, and the
average relative difference ε equals 13.6%. In Fig. 3 (Bottom),
we can see that ε is an increasing function of α, while
it is a decreasing function of β. This is because, as the
spontaneous probability β increases, both the analytic and
simulated numbers of actions increase linearly, while the gap
between them stays relatively stable, as shown in Fig. 3 (Top).
When we consider the 63 cases for α < 0.2, we have a
smaller ε = 6.1%, which further decreases to ε = 2.5% when
considering the 36 cases for α < 0.1. These results indicate
that the analytic and simulated results match well in most
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Fig. 4. (Top) The analytic and simulated values of the breadth φ(T ) for a
social synchrony as functions of stimulated and spontaneous probabilities α
and β. (Bottom) The color map for the relative difference ε between analytic
and simulated values of breadth as a function of α and β.

cases, especially for small α. The difference between them is
considerable only when α is relatively large, which violates
the assumption used to get the simplification Eq. (3) from
Eq. (1).
Experiment 2: In this experiment, we focus on breadth of
impact. We use the same network as in the first experiment,
and then get the analytic and simulated values of φ(T ) with
ρ(0) = 0.1 and T = 25 for α varying from 0 to 0.25 and β
from 0 to 0.1. Here we choose a smaller T to make sure
that the number of active nodes in this period of time is
smaller than the total number of nodes in the network. For
the analytic values we use Eq. (21); for the simulated values,
similarly to above, we implement the discrete model for 50
rounds and then record the mean value of φ(T ). Note that
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Fig. 5. (Top) The relationship between the depth ϕ(T ) for a social synchrony
stimulated by a single node and the degree k of that node. We provide the
analytic and simulated values, and also the regression line for the simulated
values. (Bottom) The Mean Squared Error (MSE) between the analytic and
simulated values for the cases of different stimulated probability α.

in the discrete model, a node may be active several times in
the period T = 25. In such a case, we only count it once.
That is, we count the number of nodes that are active at
least once in T = 25 time steps as the simulated value of
the breadth φ(T ) in a single round. The results are shown in
Fig. 4. This time, the analytic and simulated values of φ(T )
are very close to each other in almost all cases considered,
as shown in Fig. 4 (Top), and the average difference between
analytic and simulated values is quite small, i.e., ε = 3.1%,
strongly validating the accuracy of our theoretical results on
the breadth of impact. In Fig. 4 (Bottom), we can see that ε is
also a decreasing function of β in this case. This is because, as
β increases, both the analytic and simulated numbers for the
active nodes become saturated, i.e., their values are close to
the network size and, thus, the difference between the models
goes to zero.
Experiment 3: In this experiment we study more precisely the
relationship between depth of action for a social synchrony
stimulated by a single node and the degree of that node. We
generate a network with widely varied node degrees. To this
end, we set the network parameters as N = 1000, kmin = 2,
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Fig. 6. (Top) The analytic and simulated values of the significant index χ(θ)
for a social synchrony as functions of stimulated and spontaneous probabilities
α and β. (Bottom) The color map for the relative difference ε between analytic
and simulated values of significant index as a function of α and β.

and γ = 2. For each degree k in the network, we randomly
choose a node of that degree as the only initial active node. For
the social synchrony model, we vary the stimulated probability
α and set β = 0 and T = 25. For the analytic values, we use
Eq. (24). For the simulated values, we use the mean value of
ϕ(T ) by implementing the discrete model on the same network
for 50 rounds. The relationships between ϕ(T ) and the degree
of the initial active node for α = 0.01, 0.02, 0.05, 0.1 are
shown in Fig. 5 (Top). Moreover, we also calculate the Mean
Square Error (MSE) between the analytic and simulated values
for each case, and the relationship between MSE and the
stimulated probability α is shown in Fig. 5 (Bottom). We
find that 1) the simulated values of different α can be well
fitted by lines with different positive slopes, i.e., the social

synchrony stimulated by the node of higher degree tends to
include larger number of actions, validating that the nodes
of larger degree play more important role in driving social
synchrony. 2) the MSE is relatively low for small values of
the stimulated probability α, i.e., α < 0.1. This suggests that
the analytic and simulated values in this experiment match
well when α is small enough; otherwise, the gap between
the two increases fast as α increases, i.e., the average relative
difference is ε = 3.5% when α = 0.01, and increases to 28.6%
when α = 0.1. 3) For large α, the regression lines always have
larger slopes than the theoretical lines, indicating that, in this
case, the hub nodes of high degree in a network play even
more important roles than predicted theoretically.
Experiment 4: In this experiment we focus on identifying
surprising burst of actions in a relatively short period of time.
The network parameters are set the same as in the first two
experiments. Then, for α varying from 0 to 0.25 and β from
0.0125 to 0.1, we get the analytic and simulated values of
χ(θ), with θ = 5. Note that, based on Eq. (29), when β = 0,
the analytic significance χ(θ) goes to infinity, so it is not
considered here. For the analytic values, we use Eq. (29). For
the simulated values, we set ρ(0) = 0.2, T = 500, generate
the actions based on the discrete model in this relatively long
period of time T , and observe the number of actions ϕ(θ)
in the first short period of time, θ. Then, for the null model,
we uniformly redistributed these actions randomly, across the
period of time T , and calculate the corresponding ϕo(θ).
Finally, we use Eq. (28) to get χ(θ). We run the discrete model
for 50 rounds and then record the mean value. Here, we use
a larger ρ(0) in order to generate a larger number of actions
in the beginning than in the rest of the time, so that we can
observe more significant burst of actions in the short initial
period.

We find that, in most cases, both the analytic and simulated
values of the significant emergence index χ(θ) are larger
than 0, the values decrease as the spontaneous probability β
increases, and χ(θ) becomes slightly negative for relatively
large α and β, as shown in Fig. 6 (Top). These findings suggest
that most of the time we can identify surprising bursts of
actions in a social synchrony, but it gets more difficult to do so
when α and β are relatively large, i.e., when there are lots of
actions in any given period of time. Since most of the analytic
and simulated values are quite small in this case, as expected,
the average relative difference ε is relatively large, as shown
in Fig. 6 (Bottom). It is equal to 43.9% for all the Nα,β = 72
cases, while this value decreases to 11.4% for the 32 cases
when α < 0.1. However, we can still find the same trends of
analytic and simulated values as α and β increase, indicating
a good match between them.

Remark 6: Here, we study social synchrony on uncorrelated
random scale-free networks, with degree distribution satisfying
P (k) ∼ k−γ , proposed by Catanzaro et al. [64]. We chose this
network model due to the following two reasons: 1) Many real
social networks are scale-free [5], [62], [65] and contain a few
hub nodes of quite large degree; 2) The networks generated
by this model have an ideal topological property, i.e., there is
no degree correlation between linked nodes, which is the main
assumption to use mean-field theory. As a result, this kind of



IEEE TRANSACTIONS ON CYBERNETICS 10

networks have been extensively adopted to numerically study
network dynamics such as reaction-diffusion process [54],
[55], and thus are also adopted here since mean-field theory is
the key to get Eq. (4) from Eq. (3). Even so, our theoretical and
numerical results can be naturally generalized to other kinds
of networks, and the only requirement for these networks is
that there is no degree correlation between linked nodes. We,
thus, extend the first, second, and fourth experiments onto
random [66] and small-world [4] networks, and obtain very
similar results. For the third experiment, we find that it is
necessary to study it on networks of widely varied degrees,
in order to derive clearer relationship between the depth for a
social synchrony stimulated by a single node and the degree k
of that node. For this purpose, neither random nor small-world
networks are good candidates.

Remark 7: We chose the four attributes of social synchrony
because they are present in many empirical findings. But, they
are not necessarily independent from each other. Eqs (20)-
(22) indicate that the breadth of impact φ(T ) is positively
correlated with the depth of action ϕ(T ), which is validated
by the numerical results as well. As we can see in Figs. 3
and 4, both ϕ(T ) and the φ(T ) increase as the stimulated
probability α and the spontaneous probability β increase. And
even the trends of the relative differences between analytic and
simulated values for these two characteristics are quit similar,
i.e., they are distinct only when α is large while β is small.
The only difference between the two is that the depth of action
can keep increasing as α, β, and T increase, while there is
a limitation for the breadth of impact, as it cannot be larger
than the network size N . The heterogeneity of role is also
associated with the depth of action ϕ(T ), as indicated by
Eq. (24) and Fig. 5. The difference is that, for the heterogeneity
of role, we mainly focus on the social synchrony stimulated by
a single node (β is thus set to zero) and study the relationship
between the depth ϕ(T ) and the degree k of that node, rather
than the overall depth of action as a function of α and β.
The emergence of phenomenon is defined based on the depth
of action, as presented in Eq. (28), and is used to measure
the significance of the latter in observation versus chance.
However, in contrast to the latter, it is a decreasing function
of β, as shown in Fig. 6, which is reasonable considering
that social synchrony tends to become more of a random
phenomenon as the spontaneous probability β increases. The
relative difference between the analytic and simulated results
for any experiment is notable when α is large, although in
practice, when α is likely very small, this should not be the
case.

V. CONCLUSION

In this paper we sought to study social synchrony, as
characterized by four typical properties: depth, breadth, het-
erogeneity, and emergence. We proposed a discrete social syn-
chrony model on complex networks to explain these properties
theoretically, assuming that social links play an important role
in social synchrony. We performed theoretical and numerical
analysis of social synchrony on complex networks, and found
that the analytic and simulated results match well under the

assumption that the stimulated probability is small enough.
These findings validate the effectiveness of our model and
may provide useful insights for better understanding of online
social synchrony.

For simplicity, in this work we set spontaneous and stimu-
lated probabilities as constants in our social synchrony model,
which might not be true in reality. In fact, people may have
much more passion to present and spread some interesting
issues online when they are relatively new, but this passion
abates with time. This suggests that it would be more appro-
priate to set larger spontaneous and stimulated probabilities in
the early stage of the evolution of the model. Our results in
the third experiment indicate that, in this case, hub nodes may
play even more prominent roles than expected. Future work
should consider methods that can incorporate changing trends
in α and β over time, in real social systems, and allow for
these two parameters to change with time in a coupled fashion.
Meanwhile, more experimental studies will also be necessary
to understand, and further improve, the models, which should
be possible given the large amounts of data coming from large
studies of social online media.
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