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Abstract—Maintaining a productive and collaborative team of
developers is essential to Open Source Software (OSS) success,
and hinges upon the trust inherent among the team. Whether
a project participant is initiated as a developer is a function of
both his technical contributions and also his social interactions
with other project participants. One’s online social footprint is
arguably easier to ascertain and gather than one’s technical
contributions e.g., gathering patch submission information re-
quires mining multiple sources with different formats, and then
merging the aliases from these sources. In contrast to prior work,
where patch submission was found to be an essential ingredient
to achieving developer status, here we investigate the extent to
which the likelihood of achieving that status can be modeled
solely as a social network phenomenon. For 6 different OSS
projects we compile and integrate a set of social measures of
the communications network among OSS project participants
and a set of technical measures, i.e. OSS developers patch
submission activities. We use these sets to predict whether a
project participant will become a developer. We find that the
social network metrics, in particular the amount of two-way
communication a person participates in, are more significant
predictors of one’s likelihood to becoming a developer. Further,
we find that this is true to the extent that other predictors, e.g.
patch submission info, need not be included in the models. In
addition, we show that future developers are easy to identify
with great fidelity when using the first three months of data
of their social activities. Moreover, only the first month of their
social links are a very useful predictor, coming within 10% of the
three month data’s predictions. Finally, we find that it is easier
to become a developer earlier in the projects lifecycle than it is
later as the project matures. These results should provide insight
on the social nature of gaining trust and advancing in status in
distributed projects.

I. INTRODUCTION

Open Source Software (OSS) are developed by volunteers
who are often geographically and temporally distributed, and
yet work together effectively and productively. Well known
examples of successful OSS projects, like the Linux operating
system, Apache web server, and many others, rival or even
exceed the quality of commercial competitors.

Participants in OSS projects have different roles, most
prominently developers, patchers and users. Developers in-

troduce changes to the code by committing directly to the
project’s source code repository; they have the highest level
of access to the project and also share the greatest re-
sponsibility of delivering a viable product. Patchers submit
proposed changes in the form of small updates to the code,
known as patches, such as bug fixes, feature improvements,
or documentation, which then are reviewed by developers
and added to the project code at their discretion. Users are
the downstream consumers of OSS. Project participants may
migrate between these roles through the life of a project. This
process has received a lot of attention in the empirical software
research literature where it is variously referred to as developer
initiation [1], entering the circle of trust [1], migration [2], and
immigration [3]. A typical trajectory to becoming a developer
is to start communicating with other participants in the project
and then gradually get more involved, by earning a more cen-
tral position in the project’s social networks and/or producing
more valuable technical contributions, like submitting patches,
or working on bug activities [3].

The congruence of one’s social and technical activities
makes for a successful participation in a project [4]. In a
sense, a project participant is as integral to the project as their
contributions, be they communications or bug fixes. Strong
working code leads to trust in the participant’s ability to
develop within the context of the project, and additionally,
strong social skills signify to the team that the participant
can be trusted to work within the project’s team setting. The
more trustworthy a participant, the more likely it is that he
may eventually achieve developer status. Generally, only those
participants who have sufficiently proven themselves through
their activities, become developers.

Developer initiation, thus, depends on the social and tech-
nical actions of project participants, e.g., who they talk to,
the number of social links they have with other project
participants, their communication patterns, patch submission
activity, bug identification and fixing, etc.. But to what extent
do social activities and technical activities work together to
increase one’s chance of advancing to the ranks of developers?
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Figure 1. An OSS project community’s circle of trust is
comprised of developers. Project participants A and B are
candidates for entering the circle. The activities of Person
B are more significant positive predictors of him gaining
developer status because he communicates more (thin solid
arrows) than A does (thin dashed arrows), even though A
contributes patches and B doesn’t.

In this paper, we revisit the issue of migration between
roles in OSS projects studying it from a social network anal-
ysis perspective. We collect developer communication, patch
submissions, and code change data for 6 projects from the
Apache Software Foundation (ASF). From the data we build
statistical predictors for future developers in OSS projects and
compare models with different predictors, as well as models
across different time periods. We find that:

• Developer initiation in OSS can be modeled very well
as a social network phenomenon based solely on peo-
ple’s communication activities, in particular the number
of (two-way) social links they establish, i.e. messages
participants respond to or receive, in response to their
own message.
The (two-way) social links are different from a one-
way communication, most of which might not attract
any attention or response. Social links based models
exhibit better predictive ability for developer initiation
than models incorporating patch submissions.

• Whether a participant will eventually become a developer
can be predicted with great accuracy from the first three
months of their tenure with the project. In most cases,
this is based solely on the number of their (two-way)
social links. Furthermore, models learned on only a
single month of data containing the social links that one
establishes, yields good predictions results that are within
10% of the three month data.

• The impact of both social and technical participation
declines with project age. It becomes more difficult to
attain developer status as the project matures.

The rest of the paper is organized as follows. We first focus

on the background behind OSS development and migration
and present our research questions. Then, we describe the data
and data gathering process, followed by our methods, results,
and conclusion sections.

A. Background

To become a new developer, a participant must first gain
acceptance within the community. Trust in the developer’s
technical and social skills is believed to increase with time
as a result of increased contribution and interaction by new
participants [5]. Participation indicators, including the number
of emails sent, their degree in the social network, the number
of developers among a participant’s neighbors, the numbers
of bugs reported, and the number of patches submitted, may
all be indicators of the community’s trust in the candidate’s
abilities.

In most cases, to become a developer in an ASF project a
new participant will first engage in discussion with other users
and developers by joining the developer mailing list. Actively
contributing interesting discussions and valuable insights to
the project are key ways in which a new user can attract
the attention of existing developers and gain social reputation
within the community. The activity and the reputation of a
user can be quantified through measures such as the number
of emails he sends and the degree of the corresponding nodes
in the email social network [6], [7].

Submitting patches is the preferred way in which unverified
code changes are communicated in many OSS projects. Sub-
mitting a bug fix patch provides a basic degree of evidence
that a user understands the software at a technical level. Such
contributions should increase a participant’s trustworthiness
within the community. The contribution of the user can be
quantified, e.g., by the number of patches accepted.

In the ASF open source community, once a user has
contributed sufficiently to a project, they may be nominated
for developer status by an existing developer. The existing
developers may then choose to grant this user committer status,
allowing the new developer to make direct changes to the
project’s source code repository. Hence, whether a participant
will eventually become a developer is a function of all the
participants social and technical activities within the project’s
ecosystem.

Figure 1 illustrates two contributors, A and B, who want
to become developers, but have two different profiles of
activities. Contributor A contributes patches, and has a low
level of communication with other participants, while B does
not submit patches but communicates extensively with other
participants. Our results in this paper show that B’s activities
are more significant for predicting his future developer status
than are those of A, respectively.

It is important to note that this is just the basic framework
of how a user becomes a developer in ASF projects, and the
situations may vary for different projects in different stages of
their evolution. For example, some projects may require the



users to enter the bugs into a bug tracking database, such as
Bugzilla or Jira, while others may require users to submit bug
reports to a mailing list. The latter method may increase the
interaction between users and developers in these projects, and
thus affect the dynamics of earning trust. Additionally, users
may have different motivations to join a project [8]–[10], e.g.,
enjoyment, reputation building, and skill improvement. The
commercial backers of some open source projects may also
provide incentives for skilled programmers to contribute in
order to grow their project in it’s early stages, while in the
later stages, when the project has matured, developers are often
more willing to volunteer in order to gain a signaling benefit
to prospective employers [9].

B. Research Questions

In this paper we seek to identify effective social activity
predictors of developer initiation in OSS projects, and to
improve upon existing models for predicting future developers.
Specifically, we ask which social metrics are effective, how do
they interact with the technical measures of patch activities,
and how soon can we predict that a participant will become a
developer?

While the data on mailing list communications within
projects are readily available, as are code commits and
changes, patches and bug identification data is more difficult to
gather [11] since it requires parsing message texts and mining
multiple sources of predicting developers both when patch
information is available and also when it is not.

Research Question 1: To what extent can developer
initiation in OSS projects be modeled as a function of
patch activities and social communication? How about
just as a function of social communications?

Early in their tenure as OSS project participants, people’s
patterns of technical and social activities are rapidly changing.
Participants usually take some time to familiarize themselves
with the code before submitting patch fixes. Additionally,
they also might try to assimilate the project culture and
available knowledge initially before asking questions of their
own. Therefore, predictions of future status may be unreliable
early in a person’s tenure. Here, we seek to predict project
participants’ likelihood of becoming a developer based on the
patterns of their activities early in their tenure.

Research Question 2: How well can we predict if a
person will become a developer based on information
early in their tenure with the project? i.e. can we tell if
someone will become a developer based on their activities
in the first three months? Six months? Or just one month?

Finally, as projects evolve, determinants of trust are also
likely to evolve and change, consequently, measures of trust

and predictors of status change may not be static. This is
mirrored in other fields, e.g. clandestine operations, where
communication is over public channels but action traces are
rarely readily observable. While the number of developers
in a project grows proportional to its size, the number of
participants in a project’s mailing list grows exponentially.
This increasing gap between potential developers and new
position openings in turn change how trust is earned as a
project matures.

Research Question 3: Is it easier or more difficult to
become a developer later in the project?

II. RELATED WORK

There have been a fair number of studies on the motivations
of developers for joining OSS projects and migration in OSS
projects. Some projects have clear guidelines on how a new
participant can contribute. The structure of this hierarchical
process is known in the literature as the “onion model” [8],
[12].

Von Krogh et al. performed a detailed case study of the
freenet project; they interviewed participants and developers
recording their patterns of individual activity and concluded
that individuals following these guidelines are highly more
likely to become developers [13]. Ducheneaut examined a
single individual and his process of promotion to a core
developer in the Python project [14]. Jensen and Scacchi
studied role sets and the process of role migration in Mozilla,
ASF and Netbeans [2].

Sinha et al. studied how developers enter the “circle of
trust” by identifying key factors that lead to committer sta-
tus [1]. They hypothesized that developers who contribute to
the projects’ bug tracking system, have prior experience con-
tributing code to OSS, and who work for the same organization
as some member of the core group, are more likely to obtain
committer status.

The path to becoming a developer is not necessarily a step-
by-step process. Herraiz et al. found that apart from gradual
progression, there is another common developer joining pat-
tern, viz., the quick initiation of employees of enterprises in-
vested in that OSS project as new developers [15]. Shibuya and
Tamai performed case studies and confirmed these findings on
other OSS projects (GNOME, OpenOffice.org, MySQL) [16].

Qureshi and Fang have identified different classes of devel-
opers based on socialization patterns using Growth Mixture
models. They found that for each class of social behavior, the
“Lead Time” i.e. the time it takes to become a developer, is
unique and correlates with the amount of social activity of that
class [17].

Bird et al. quantitatively modeled the relationship between
time spent with the project and the probability of becoming
a developer; their model used patch activities, social network
attributes, and the time to first commit from the time of first



communication on an email network [3]. Using proportional
hazard rate modeling they observed that a developer’s tenure
is related to his skill and commitment as measured by his
participation in the email network and his contribution of
patches prior to first commit. Further, they identified and
described a non-monotonic trend in the likelihood of becoming
a developer that rises with tenure, peaks, and then declines
with project maturity. While their work is similar to ours in
some aspects, their approach of predicting the “time” until
one becomes a developer is in contrast to our work in that
we focus on identifying “who” is more likely to become a
developer rather than “when”. The hazard analysis techniques
used in their work support their approach.

Zhou and Mockus have modeled the status of “Long Term
Contributors” based on three dimensions: environment, will-
ingness, and capacity [18]. Their work focuses on issue track-
ing systems and workflows within those systems as sources of
information.

Our work differs in that we focus on understanding how
soon can we predict developer initiation after initial partic-
ipation and, additionally, to what degree can social metrics
replace technical attributes.

III. DATA GATHERING

In this study we focus on six projects from the Apache
Software Foundation. Their summary is given in Table I.
For each project we mined three datasets, the developer
mailing list, the issue/bug tracking systems and the source
code repository.

From the developer mailing lists, we construct the Email
Social Networks, ESN. We extract patch submissions from
both the issue tracking systems and the developer mailing lists.
Lastly, we obtain the history of source code changes from
the source code repository. All of the sources were mined
from the first date of available data, until the date of mining
(March 2012), and the dates in Table I denote the intersection
of available data in all three datasets.

We extract patch submissions from both the issue tracking
systems and the developer mailing lists. Lastly, we obtain
the history of source code changes from the source code
repository.

TABLE I. OSS projects used in this study show diversity both
in size and in relative activity. #Users refers to the number
of individuals in the ESN and #Devs refers to the number of
distinct developers in each project’s source code repository.

Project #Users #Devs #Mails #Patches Start End
Ant 1416 44 17300 1482 2000-01 2012-03
Axis2 c 600 24 11152 754 2004-01 2012-03
Log4j 539 18 3811 166 2000-12 2012-03
Lucene 2155 41 43922 5576 2001-09 2012-02
Pluto 266 24 3017 259 2003-10 2011-09
Solr 840 19 14411 4090 2006-01 2010-04

A. Email Social Networks

It is a general policy for OSS projects to channel as much
communication as possible through project mailing lists so
that all participants can benefit from the exchange of ideas
and information [11]. Any message sent to these lists will
be broadcast to all subscribed participants. Such broadcast
messages differ from point to point email messages in that
they do not have a clear and distinct recipient. Even given
this difficulty, however, we can still infer a communication
network. When person A sends message M , in response to
message N , that was sent by person B, then there is a high
chance that A primarily intended to communicate to B in
response to their initial message that was broadcast to no
particular recipient [11]. Such links are in fact two-way social
links, in that the communication occurs both ways. Self-loops
were removed when constructing ESNs. We note that the
final network is a multigraph, since we permit multiple edges
between people.

1) Unmasking Aliases: Project participants often use dif-
ferent aliases within the same project, e.g., (John Smith,
smith@gmail.com), (Smith, John@smith.com), (John S.,
J.smith@ucdavis.edu). Since these aliases represent a single
person they must be merged if we are to accurately capture an
individual’s social activity. Unmasking aliases is a well-known
problem in the literature [11], [19], [20]. Bird et al. used a
string similarity based approach to address this problem [11].
We improved and automated their procedure reducing the need
for human interaction. We first remove all suffixes, prefixes,
and generic names, e.g., Dr., Mr., Jr., Admin, for comparison.
Then, for each alias pair a similarity score is calculated as
a combination of four sub-scores comparing aliases’ names
and emails. Perfect matches are automatically merged, whereas
less than perfect matches that achieve a minimum threshold
of 0.93 on a unit scale are presented to the researcher to
disambiguate. The chosen threshold was selected empirically
to reduce the number of false positives while limiting false
negatives.

B. Issue Tracking Systems

Issue tracking systems such as Jira and Bugzilla maintain
a database of issue reports submitted by developers and
users. Issues are of various types including new features,
improvements, or defects. Developers can submit new issues
to the tracking system or report results on existing issues by
interacting with the system either through the web, or in some
cases, directly via the source code repository.

C. Patch Extraction

Patches are the preferred method of fixing bugs or issues
and/or making small adjustments to the code. Patch submission
is not limited to developers, and submitting a patch does not
imply that the mentioned patch will be applied. It is up to
developers to review the patches and apply them if they are
accepted.
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Figure 2. Distribution of number of patch submissions by developers and non-developers in each project. Only individuals with
at least one patch submission are plotted, since adding those with no submission would highly skew the plots towards zero.
The numbers in the parentheses show each group’s population. A Wilcox signed rank test across each project yields p-values
in order: 0, 0.01, 0.44, 0, 0.72, 0, indicating that in Log4j and Pluto, patch submission is not statistically different for those
participants who become developers and those who don’t when measured in the first three months of participation.

There are multiple methods and formats in which one can
submit a patch to an OSS project. The common accepted
format for a patch submission is to send the “diff” of the code
changes to existing developers. ASF provides two popular
choices of issue tracking systems for OSS projects: Jira and
Bugzilla. Patches can be submitted as attachments to an issue,
or simply as inline text, i.e. pasting the patch “diff” code,
either as part of the issue’s description text, or as a comment
on that specific issue.

The developer mailing lists can also act as a medium for
patch submission [21]. In this case patches are submitted
through messages to the mailing list, either with the code
pasted in the text message or as an attachment.

To extract inline patches, we used regular expression pattern
matching queries in mailing list messages, and issues/bugs
comments and description. Patches submitted as attachments
are generally named with a “.diff” or “.patch” extension.
However, we found that sometimes patch submissions do not
follow this naming convention, e.g. “patch.txt” is used, or
multiple patch files are combined in an archive, requiring the
extraction of that file, and subsequent manual examination of
all filenames contained within the archive.

Table II shows the distribution of patch submission among
the multiple sources of patches in each project.

D. Source Code Repository

A source code repository and version control system, e.g.
Git, SVN, and CVS, facilitates collaboration among developers
by maintaining a history of changes and an associated log entry
for each change. These systems can provide information such

TABLE II. Different projects have different paths for patch
submission. The preferred method of patch submission is
differs across projects and we attribute this to project culture.

ML inline ML attach bugzilla attach jira inline jira attach
Ant 413 976 93 0 0
Axis2 c 63 200 0 27 464
Log4j 87 57 19 0 3
Lucene 141 107 0 88 5240
Pluto 15 26 0 8 210
Solr 30 4 0 48 4008

as list of files, list of developers and a detailed record of all
changes to all files by any developer. This information allows
us to distinguish developers from non-developers in the ESNs
and to track their history of activity.

All selected OSS projects for this study use Git as their
version control system, however they initially used SVN
migrating later to Git, Some projects continue to maintain both
repositories.

Since this dataset and the ESN use separate sets of aliases
(not necessarily identical) as personal identifiers, a manual
matching between people across the two datasets was per-
formed.

IV. METHODOLOGY AND MODELING

A. Social Communication Measures

For each participant in our datasets, we gather the following
metrics to model the relationship between their social and
technical characteristics to their potential developer status.

• Project age The number of days from the start of the
project where a node has its first edge in the graph. This
is the first message received by or replied by that person
in the ESN.

• Is a New Developer: A binary variable indicating whether
this person ever commits into the repository after they
have joined the mailing list. Those who were developers
prior to this time are beyond the scope of this paper as
we are interested in the process of attaining developer
status.

• Number of Patches: The number of patches one has
submitted.

• Number of Messages: The number of edges connected
to a node in the multigraph i.e. a node’s degree. This is
not just the number of messages one sends, but rather the
number of messages one sends in response to others plus
the number of messages one receives in response to their
messages.

• Number of Threads: The number of threads started by a
person. A thread is a message that is not in response to
other messages. Threads are not included in the ESN due
to inability to associate them to a specific pair of nodes.



TABLE III. Patch submission is a significant predictor when
no social variables are included in the model. This basic
logistic regression model only uses “number of patches” in
3 months and includes “project age” as a control variable. For
all variables, the log of that variable plus 0.5 was used in
the modeling. The values in the first column are the model
coefficients and the highlighted coefficients are statistically
significant (p < 0.05).

Ant Estimate Std. Error z value Pr(> |z|)
(Intercept) -1.73 1.12 -1.55 0.12
Project age -0.33 0.18 -1.87 0.06
Number of patches 1.06 0.18 5.82 0
Axis2 c Estimate Std. Error z value Pr(> |z|)
(Intercept) -0.91 1.01 -0.9 0.37
Project age -0.39 0.16 -2.46 0.01
Number of patches 0.93 0.21 4.53 0
Log4j Estimate Std. Error z value Pr(> |z|)
(Intercept) -3.53 1.98 -1.78 0.07
Project age -0.11 0.29 -0.38 0.7
Number of patches 0.36 0.83 0.43 0.67
Lucene Estimate Std. Error z value Pr(> |z|)
(Intercept) 1.08 0.84 1.28 0.2
Project age -0.7 0.12 -5.71 0
Number of patches 1.16 0.18 6.42 0
Pluto Estimate Std. Error z value Pr(> |z|)
(Intercept) -0.88 0.84 -1.05 0.3
Project age -0.34 0.15 -2.3 0.02
Number of patches 1.11 0.32 3.45 0
Solr Estimate Std. Error z value Pr(> |z|)
(Intercept) 0.44 1.19 0.37 0.71
Project age -0.72 0.19 -3.69 0
Number of patches 0.75 0.29 2.58 0.01

• Neighbors: The number of unique nodes that a node is
connected to. This is different from number of messages
in that a node can connect to other nodes through multiple
edges thus differing these two measurements.

• Neighbor Developers: The number of unique nodes with
developer status that a given node is connected to.

B. Modeling Developer Initiation

We use logistic regression, a generalized linear model
designed to model probabilities for dichotomous outcomes,
to model whether or not a project participant will become a
developer based on several social explanatory variables.

Previous work in this area has used survival modeling to
model the trajectory over time of developer initiation [3]. In
this work we are focused on early detection of developer
initiation which limits the amount of data available to model
the trajectory. Moreover, since we are interested in the dichoto-
mous outcome of whether a participant becomes a developer,
logistic regression is a more appropriate choice.

The dataset used for our studies, contains the features
and metrics described above for the first k months, of each
individual’s activity (k = 3 unless explicitly stated). We
attempt to predict “Is a New Developer”. The variables used
for each of the models are described in the results. The project
age at which one joins that project, is added to all models as
a control variable. For all numeric variables, the log of that

TABLE IV. The second logistic regression model, adding
“number of messages” to the previous model. It is seen that
“number of patches” slightly loses its significance.

Ant Estimate Std. Error z value Pr(> |z|)
(Intercept) -4.32 1.32 -3.28 0
Project age -0.2 0.19 -1.08 0.28
Number of patches 0.61 0.2 3.06 0
Number of messages 1.07 0.2 5.35 0
Axis2 c Estimate Std. Error z value Pr(> |z|)
(Intercept) -2.85 1.33 -2.15 0.03
Project age -0.3 0.17 -1.81 0.07
Number of patches 0.53 0.25 2.11 0.03
Number of messages 0.57 0.22 2.62 0.01
Log4j Estimate Std. Error z value Pr(> |z|)
(Intercept) -7.28 2.51 -2.9 0
Project age -0.13 0.3 -0.42 0.67
Number of patches -0.8 0.98 -0.82 0.41
Number of messages 1.89 0.44 4.26 0
Lucene Estimate Std. Error z value Pr(> |z|)
(Intercept) 0.26 0.89 0.29 0.77
Project age -0.8 0.13 -6.04 0
Number of patches 0.69 0.22 3.14 0
Number of messages 0.74 0.2 3.75 0
Pluto Estimate Std. Error z value Pr(> |z|)
(Intercept) -1.44 1 -1.44 0.15
Project age -0.37 0.15 -2.46 0.01
Number of patches 0.81 0.42 1.95 0.05
Number of messages 0.42 0.4 1.04 0.3
Solr Estimate Std. Error z value Pr(> |z|)
(Intercept) -2.86 1.45 -1.97 0.05
Project age -0.67 0.2 -3.39 0
Number of patches -0.15 0.35 -0.44 0.66
Number of messages 1.18 0.31 3.83 0

variable plus 0.5 was used to stabilize variance and reduce
heteroscedasticity [22]. Since all untransformed values in our
data are skewed, the increase in the value of a variable by one
unit does not have the same effect at high values as it does in
low values, e.g., the number of patches changing from 1 to 2
is much more meaningful than changing from 100 to 101.

Since we are trying to predict who is going to become a
developer, sample data for developers who were initiated in
fewer than k months were removed from the dataset.

For each learned model, we evaluate its validity based on
two criteria. The first is project independence, i.e. we want our
model to hold across projects. In support of this, we look at the
stability of each model coefficient’s statistical significance, as
determined by the coefficient’s p-value. Commonly, a p-value
of less than 0.05 is an indicator of significant results.

Excessive multicollinearity is a concern in regression mod-
els and it can occur when predictors are highly correlated. To
check for this we use the Variance Inflation Factor (VIF). A
common rule of thumb is that for any variable x in a model,
V IF (x) > 5 indicates high collinearity. In all of our models
in this paper, VIF of all variables remained well below 2
except for some models with highly correlated variables. These
models were discarded as it will be explained later in the paper.

To evaluate a model’s predictive power, we use the Area
Under the Receiver Operating Characteristic (AUROC) mea-
sure [22]. ROC illustrates the performance of a binary classi-



fier in a TP-FP space, while varying the cutoff threshold. A
random predictor would be a line with the slope of 1 and the
area of 0.5 while a perfect predictor will have an area of 1.

Overfitting is a concern with any statistical model so to
help alleviate any concern and to yield a stable estimate of
the predictive power of our models we employ resampling
methods. We define training and testing sets using 2/3 holdout
for our training sets. To maintain a similar distribution of
developers vs. non developers in the training and testing sets
we employ stratified sampling. Each of the test and training
sets will then have roughly the same ratio of developers to
non-developers. This ensures that the resulting model is not
extremely biased in that the training set would contain almost
all, or none of the developers. The first case would cause
a testing set with no positive samples, and the latter would
results in a zero model due to the lack of positive samples
in the training set. We resample 250 times and average the
AUROC over all these models to indicate the overall predictive
power of a model.

V. RESULTS AND DISCUSSION

A. Research Question 1

We evaluate here the stability and predictive power of
models using patches, length of time with the project, and
a number of social measures. We motivate this question
with Fig. 2. This figure shows that, although most of the
time there is a meaningful difference between developers and
non-developers who submit patches, still there are many non-
developers who behave like developers in terms of patch
submission. Consequently, it is likely that using patches alone
may not yield the best prediction model.

This simple model, using “Number of patches” and no
social network measures shows that patch submission is often a
statistically significant predictor (Table III). However, adding
“number of messages” (as an indicator of social collabora-
tion) to this model results in patches slightly losing their
significance (Table IV), We used a Chi-Squared goodness of
fit statistic to verify that the additional predictor explained a
statistically significant amount of the deviance in the model,
viz., is the addition of the new variable justified. For all
projects projects except Pluto adding “number of messages”
was significant with a Chi-Squared test p-value of < 0.01. A
Spearman correlation test between “number of messages” and
“number of patches” does not show significant correlation be-
tween them, mostly below 0.3 over all projects, in concordance
with our VIF values of less than 2.

The predictive power of these two models and the additional
models with only “Number of messages” and the combination
“Number of messages + Threads” is shown in Fig. 3. We
see that not only adding number of messages dramatically
improves the predictive power, but removing the patches
variable from the model does not lower the predictive power
of the model. A Kruskal-Wallace test followed by a post-
hoc pairwise Wilcoxon test for each project reveals that in

TABLE V. Spearman’s Correlation between different variables
in all projects. Correlation values higher than 0.5 are high-
lighted.

Ant Axis2 c Log4j Lucene Pluto Solr
messages vs. dev neighbors 0.62 0.52 0.49 0.55 0.53 0.65
neighbors vs. dev neighbors 0.69 0.61 0.60 0.72 0.72 0.80
messages vs. neighbors 0.82 0.76 0.70 0.67 0.66 0.75
threads vs. dev neighbors 0.21 0.38 0.12 0.38 0.25 0.56
threads vs. neighbors 0.31 0.54 0.14 0.37 0.25 0.48
threads vs. messages 0.31 0.74 0.17 0.61 0.53 0.64

all projects except Pluto and Lucene either the models with
messages or messages and threads have the highest mean
AUC, and this difference is statistically significant. In Lucene,
the best model uses both patches and messages. In Pluto,
although the patches model has the highest AUC, there is
no statistical difference between the models. Using patch
information alone is not a bad predictor, but it is evident that
using social network metrics yields more accurate predictions.

We ask next whether we can improve this simple model
by adding additional features from the ESN. Since we have
observed that sending and receiving messages is an important
indicator of whether someone will become a developer or
not, naturally we ask whether it is the number of messages
that is important or the number of distinct individuals one
keeps in contact with? More precisely, are these contacts the
same, or is communicating with developers more important
than communicating with other participants? Also we want
to see whether starting threads and discussions in contrast to
replying and being replied to, is also an important factor in
gaining the trust of the community.

These variables are quite highly correlated and we expect
that this will impact model performance (The spearman cor-
relation between these variables can be seen in Table V).
We added the number of started threads, neighbors and
neighboring developers to our existing models. While some
predictors are statistically significant in some models as can
be seen in Table VII, most are hampered by high variance

TABLE VI. Social metrics yield better performing predictive
models for developer status across most projects. Mean AUC
values over 250 runs using stratified sampling for each project.
Italicized values indicate models that include an insignificant
variable in the explanatory model. Values in bold are the high-
est mean AUC value over all models that remained significant
after a post-hoc pairwise Wilcox test out of all explanatory
models with significant variables. Projects that do not have a
value in bold were statistically indistinguishable.

project patches patches+msgs msgs msgs+threads
Ant 0.71 0.87 0.87 0.89

Axis2 c 0.83 0.84 0.83 0.82
Log4j 0.30 0.75 0.91 0.88

Lucene 0.84 0.85 0.83 0.84
Pluto 0.79 0.77 0.76 0.74
Solr 0.76 0.90 0.91 0.96
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Figure 3. Social measures outperform patch submission in a predictive setting. AUROC of 4 models, on 250 iterations of
modeling using stratified data.

TABLE VII. High multicollinearity limits the effectiveness of
additional social variables. None of the added social network
measures are stable across projects. Number of threads is
significant in two projects, ant, and solr.

Ant Axis2 c Log4j Lucene Pluto Solr
(Intercept) -4.13 -4.24 -6.28 -0.27 -2.49 -2.78
Number of messages 1.2 0.9 1.67 1 0.58 1.01
Number of neighbor devs 0.08 -0.26 0.25 0.05 0.72 0.27
Project age -0.29 -0.21 -0.17 -0.83 -0.33 -0.65
(Intercept) -5.64 -3.78 -6.87 -0.39 -2.04 -5.33
Number of messages 1.04 0.82 1.51 1.14 0.69 2.74
Number of threads 0.69 -0.01 0.6 -0.15 0.28 -1.26
Project age -0.17 -0.26 -0.12 -0.82 -0.43 -0.77
(Intercept) -5.7 -4.71 -16.87 -1.66 -2.66 -5.64
Number of messages 1.01 0.21 -2.09 0.25 0.23 2.21
Number of threads 0.69 0.12 1.07 -0.03 0.34 -1.24
Number of neighbors 0.05 1.12 7.3 1.58 0.89 1.08
Project age -0.16 -0.15 0.9 -0.67 -0.34 -0.74
(Intercept) -5.63 -4.28 -7.06 -0.39 -2.26 -5.56
Number of messages 1.03 0.94 1.15 1.12 0.34 2.6
Number of threads 0.69 -0.04 0.68 -0.14 0.35 -1.27
Number of neighbor devs 0.02 -0.27 1.02 0.03 0.85 0.37
Project age -0.17 -0.21 -0.11 -0.82 -0.39 -0.72

inflation factor owing to the high correlation between “Num-
ber of Messages”, “Number of neighbors”, and “Number of
developers” Table V. “Number of threads”, however, was
significant in two projects, Ant, and Solr, and had sufficiently
low variance inflation factor that inclusion of the variable
improved prediction results. We discuss this further in the next
subsection.

Result 1: Developer initiation can be modeled using
social activity alone, performing no worse than models
which also incorporate patch submission. The basic model
of social activity only uses “Number of Messages”, how-
ever adding “Number of Threads” improved prediction
results in 2 of the projects, hinting this might be a matter
of “project culture”.

TABLE VIII. Number of messages is a statistically significant
predictor with as little as only one month of data. Stability of
models with log of number of messages, for 1 to 6 months.
Models using two or three months time window are slightly
more stable across all projects

Ant Axis2 c Log4j Lucene Pluto Solr
(Intercept) -3.04 -2.97 -2.94 0.55 -1.43 0.42
Messages in 1 month 1.09 0.73 1.43 0.72 0.49 0.48
Project age -0.34 -0.27 -0.45 -0.81 -0.36 -0.84
(Intercept) -3.63 -3.64 -5.8 -0.09 -1.8 -0.92
Messages in 2 months 1.2 0.83 1.63 0.87 0.46 0.83
Project age -0.32 -0.24 -0.17 -0.79 -0.31 -0.78
(Intercept) -4.15 -3.77 -6.3 -0.25 -2.24 -2.64
Messages in 3 months 1.24 0.81 1.76 1.02 0.84 1.11
Project age -0.29 -0.26 -0.17 -0.83 -0.38 -0.67
(Intercept) -4.9 -3.27 -6.75 -0.83 -3.24 -3.13
Messages in 4 months 1.4 0.68 1.77 1.13 0.91 1.31
Project age -0.24 -0.32 -0.15 -0.81 -0.27 -0.72
(Intercept) -6.05 -3.51 -7.74 -0.92 -4.15 -3.37
Messages in 5 months 1.42 0.7 1.86 1.13 0.96 1.32
Project age -0.1 -0.32 -0.1 -0.82 -0.18 -0.72
(Intercept) -6.73 -3.48 -7.78 -0.98 -4.46 -3.57
Messages in 6 months 1.4 0.69 1.8 1.1 1.07 1.41
Project age 0 -0.34 -0.08 -0.82 -0.19 -0.77

B. Research Question 2

In the previous section we used information on the first
three months of individuals’ activity to model their likelihood
of obtaining committer status. But how early can such models
provide useful predictions? Is one month of information suf-
ficient, or should we increase to 6 months or more to yield
better prediction models?

A limitation in evaluating models for longer time periods is
that participants who become developers in a shorter period
must be discarded from the training set, yielding a smaller
dataset and consequently a less reliable model. The median
time to become a developer in our OSS projects ranges from 8
months to almost a year (except for Log4j which is 4 months),
and a range from 1 to 6 months includes more than half of
the developers in the dataset.

To evaluate the sufficient-time-for-prediction hypothesis, we
use the simple model discussed in the previous section (only
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Figure 4. The predictive power of the model using “number
of messages” from 1 to 6 months, each on 250 iterations of
modeling using stratified data. The AUROC for each project
slightly improves until 3rd or 4th month, and then stabilizes.

using “Number of Messages” as a predictor) with information
on the first n = 1, 2, ..., 6 months of each participant’s activity
in the OSS’ ESN. The results can be seen in Table VIII.
For one or two months the models are not as significant as
other models. But afterwards all the models are statistically
significant, valid, and surprisingly stable.

Model stability only tells one part of the story, viz., it can
explain how the model fits the data. However, there is always
risk of over-training and evaluation of the predictive power of
the models will more effectively demonstrate the value of this
model in a realistic setting. We see in Fig. 4 that the predictive
powers of the models differ slightly from one time window
to another. Time windows less than 3 months slightly suffer
from low predictive power and time windows of greater than
4 months are almost no better than 3 or 4 months. We choose
3 months as our default because of best overall stability and
predictive power (4 months is almost just as good, but with our
goal of prediction, the smaller the time window, the better).

Additionally, adding the number of threads to our model
improved the prediction results in two projects. Fig. 3 (bottom)
and Fig. 5 show that adding the number of threads to the model
slightly improves prediction performance.

Result 2: Developer initiation can be modeled with as
little as one month’s information about the social activity
of individuals; using three months yields stronger and
more stable result.

C. Research Question 3

We are also interested in understanding how trust evolves
over the life of each project. Looking back at previous models,
we see that in all cases, the coefficient for “Project Age”
is negative, implying it becomes increasingly difficult to
become a developer over time. To verify this hypothesis, we
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Figure 5. The AUROC of two projects with two different
models. Black lines represent models using only “Number
of messages” while red dashed lines represent models with
“Number of Threads” added to them. The latter performs
slightly better than the former.

replaced “Project Age” with a dummy binary variable called
“IsSecond” which is true for the second half of population
(sorted in ascending order by their “Project Age”) and is
FALSE for the first half. If the coefficient of this variable is
still negative across projects it will confirm our hypothesis that
being initiated a developer becomes increasingly more difficult
over time. Ideally “Project Age” should be broken to smaller
partitions (4 or more) to give us a higher resolution view,
but increasing the resolution would result in even less sample
points in each partition, making the results less reliable.

Two different logistic regression models were fit to the data,
and the models are given in Table IX. We see that for all
projects, the coefficient of “IsSecond” is negative, although
only statistically significant across three of the projects. Based
on these observations, we conclude:

Result 3: It becomes more difficult for individuals
to become developers as the project matures; late stage
developers may have to put more effort to gain the same
level of trust.

VI. CONCLUSION AND THREATS TO VALIDITY

We presented strong evidence for the determining role that
social networking activities play in becoming a developer in an
OSS project. Surprisingly, to this end, social communications
are a better predictor than patching activity. We also present

TABLE IX. It becomes increasingly more difficult to earn trust
in an OSS. Models show a dummy variable “IsSecond” which
is true for individuals that p age > median(p age). It is seen
that joining the project later has a negative effect on one’s
chance of becoming a developer.

Ant Axis2 c Log4j Lucene Pluto Solr
(Intercept) -5.5 -4.21 -7.69 -4.74 -2.99 -6.59
Number of patches 0.62 0.59 -0.76 0.62 0.85 -0.2
Number of messages 1.08 0.56 1.89 0.72 0.49 1.17
IsSecond -0.36 -2.08 -0.9 -2.46 -2.1 -1.34
(Intercept) -5.76 -4.93 -7.04 -5.42 -3.8 -6.33
Number of messages 1.24 0.82 1.78 0.99 0.88 1.07
IsSecond -0.57 -1.84 -0.99 -2.67 -2.01 -1.29



evidence that developers’ early social activities in the project
identify them as such. Expectedly, we also find that community
trust is more difficult to attain with time as the community
likely takes longer to identify trustworthy contributors.

Our methods are based solely on (two-way) social links
representing messages sent between project participants, but
is oblivious to the content of those messages. Clearly, know-
ing the content of the emails would add another layer of
information that can be mined. However, the quality of our
predictions while disregarding content is an indication of
the strong influence of the social link structure. This may
be of independent interest to the management and security
communities.

Our results in no way imply causality, rather a strong
statistical correlation between the measured attributes that can
be used for prediction and further research.

We recognize several threats to the validity of our ap-
proach and conclusions. The dataset gathered here was from
6 projects, all from the Apache Software Foundation. This
might impose a limitation on the pattern of communication and
contribution in these projects that will limit the applicability
of our results to other OSS projects. It also may be that
there is a systematic bias in our data, meaning what we
measure is not the likelihood of obtaining developer status e.g.
people may be assigned to be developers (rather than being
chosen) and are using ESNs to familiarize themselves with
the community. Although this assumption is quite contrary to
ASF’s guidelines [23], it is not hard to imagine other scenarios
where developers are not chosen as we think they are.

Having more projects is desirable, but practically, we had
to select projects with a large number of developers for the
predictive models to have reasonable statistical power. We
cannot address private communication between developers
which may impact the structure of the social network. This
limitation, however, affects all such work of this nature and
we do not believe that it severely limits the usefulness of our
results.
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