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ABSTRACT

We address possible limitations of publicly available data sets of yeast gene expression. We
study the predictability of known regulators via time-series analysis, and show that less than
20% of known regulatory pairs exhibit strong correlations in the Cho/Spellman data sets.
By analyzing known regulatory relationships, we designed an edge detection function which
identi� ed candidate regulations with greater � delity than standard correlation methods.
We develop general methods for integrated analysis of coarse time-series data sets. These
include 1) methods for automated period detection in a predominately cycling data set and
2) phase detection between phase-shifted cyclic data sets. We show how to properly correct
for the problem of comparing correlation coef� cients between pairs of sequences of different
lengths and small alphabets. Finally, we note that the correlation coef� cient of sequences
over alphabets of size two can exhibit very counterintuitive behavior when compared with
the Hamming distance.
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1. INTRODUCTION

New experimental technologies in molecular biology (particularly oligonucleotide and cDNA
arrays) now make it possible to quickly obtain vast amounts of time-series data on gene expres-

sion in a particular organism under various conditions. Extensive time-series data on gene expression in
yeast (Saccharomyces cerevisiae) have been obtained by Cho (Cho et al., 1998) and Spellman (Spellman
et al., 1998) using microarrays, greatly expanding our knowledge of which genes are involved in cell cycle
regulation.

The importance of the Cho and Spellman data sets is perhaps best revealed by the variety of method-
ologies being applied to analyze it. Clustering studies and promoter analysis (Eisen et al., 1998; Spellman
et al., 1998) have been used to classify genes according to where they are active in the cell cycle. We (Chen
et al., 1999a) have developed a system for proposing putative gene regulatory networks by identifying ac-
tivators and inhibitors using signal processing and combinatorial optimization. Friedman et al. (2000) have
built a system for analyzing the same data, similar in spirit, but based instead on Bayesian networks. Tech-
niques for analyzing these data sets using differential equation modeling (Chen et al., 1999b), wavelets
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(Klevecz and Dowse, 2000), and singular value decomposition (SVD) (Alter et al., 2000; Holter et al.,
2000) have also been explored.

In general, this analysis has succeeded in revealing certain gross periodicities in the data corresponding
to the cell and other cycles and has generated untested predictions of putative regulators. Microarray
technology is limited in sensitivity when comparing the relative concentrations of different genes in a
single experiment. Further, the costs associated with current microarray technologies, as well as the nature
of these experiments, make it dif� cult for the experiments to be repeated. This means that the available
microarray data, as of this writing, cannot be analyzed for accuracy or precision, since there can be no
statistical study of a single measurement. Therefore, the available gene expression data is intrinsically
noisy and dif� cult to analyze.

In this paper, we address several fundamental questions concerning possible limitations to which in-
formed predictions can be generated using these data sets:

² Predictability of known regulations via time-series analysis. Previous systems for inferring regulatory
networks from these microarray data sets (Chen et al., 1999a; Friedman et al., 2000) have bravely
assumed that the Cho/Spellman data sets contain suf� cient information to identify a substantial fraction
of all regulators. To test this hypothesis, we analyzed the literature and compiled a database of known
regulatory relations in yeast. Less than 20% of these regulatory pairs exhibited strong correlations in
the Cho/Spellman data set, clearly insuf� cient to infer large regulatory pathways by pairwise similarity
analysis.

² Improved edge detection for regulatory relations. By analyzing the known regulatory relations which
were actively expressed in the Cho/Spellman data, we were able to design and analyze an edge detection
function which identi� es these relations with greater � delity than standard correlation methods. We
believe that our edge detector is now signi� cantly better at identifying interesting regulatory candidates
than was previous work (Chen et al., 1999a).

² Periodicity and phase shift analysis of time-series data sets. The Cho/Spellman data sets comprise
four distinct time-series data sets, each measuring gene expression for all 6,178 ORFs in yeast. Each
data set uses cell cultures synchronized by a particular method (cdc15, cdc28, alpha, and elutriation),
which starts each in distinct phases of the cell cycle, with varying cell cycle lengths and sampling
frequency. Integrating these distinct time-series into a common reference frame requires methods for
inferring periodicity and phase shifts on noisy data. Our techniques yield period length and shift values
consistent with those observed by the experimenters and are of independent interest.

² Comparing correlations of distinct length sequences. Our techniques for periodicity and phase shift
analysis require comparing the signi� cance of correlations of short sequences of different lengths. Prop-
erly interpreting these correlations is a subtle problem. For example, two random sequences of length
� ve will have a correlation of 0.8 or higher roughly 60% of the time, a likelihood which reduces sharply
with increased sequence length. We show how to correct for such anomalies and apply it successfully
to identify periodicity/phase shift in the Cho/Spellman data.

² Correlation signi� cance of small alphabet sequences. The limited resolution inherent in measuring
noisy experimental data can be modeled by grouping data values into a small number of bins for analysis.
This yields data streams over a small alphabet and alphabets of size two in the limiting case. We explore
the signi� cance of the standard correlation coef� cient measure on sequences over alphabets of length
two and show that the results can be inherently misleading. For example, we show that two sequences
of any length can have a correlation coef� cient near 0 (i.e., essentially uncorrelated) even though they
are identical in all but two positions!

This paper is organized as follows. In Section 3, we demonstrate that only a small fraction of all known
regulatory relations are exhibited in these data sets and use these results to guide the design of an effective
edge detector for identifying interesting pairs of expressed genes. In Section 2, we describe the particulars
of the Cho/Spellman data sets, which we analyze throughout this paper. In Section 4, we explore techniques
to extract cycle period length and phase shifts by appropriately weighting correlation coef� cients by the
length of the associated sequences. Finally, in Section 5, we compare the correlation coef� cient with the
Hamming distance metric as a similarity measure for sequences of size-two alphabets, with surprising
results.
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Table 1. Cho/Spellman Data Sets and Their Propertiesa

Data set Period obs. Period det. ±t # samples # full orfs

alpha 66 § 11 min. 70 § 7 min. 7 18 3361
cdc28 90 § 10 min. 100 § 10 min. 10 17 1188
cdc15 70 § 10 min. 90 § 10 min. 10=20 24 3453
elu — — 30 14 4753

aThe data sets are named by the method used to synchronize the yeast cells. Period obs. indicates the
cell cycle period observed by the original researchers, Period det. is the period we detect in this study, ±t

is the time interval between measurements , # samples is the number of measurements , and # full orfs is
the number of time-series that have no missing values in them.

2. MICROARRAY DATA SETS

Our experiments were conducted on the data of Cho et al. (1998) and Spellman et al. (1998), which
are available at http://genome-www.stanford.edu/cellcycle. They are comprised of four time-series data
sets, each data containing temporal concentration measurements for all 6,178 ORFs in yeast. Each of
the experiments starts with a cell population which has been synchronized with distinct methods (cdc15,
cdc28, alpha factor, and elutriation elu), which arrest the cells in the same state by introducing external
substances, changing environmental conditions, or selecting cells that are of the same size and hence are
likely in the same state. The time-series courses have been repeated through one+ periods for Elu, two+
periods for alpha and cdc28, and three+ periods for cdc15.

Table 1 gives the cycle-times for each data set, as reported by the original researchers (Spellman et al.,
1998), the cycle-times for each data set that we detected (as reported in this writing), the time interval
between sampling points, the number of sampling points in each experiment, and the number of curves
(out of 6,178) that had no missing points in them.

Out of the four data sets, we found the cdc28 (Cho) and alpha data sets to be most yielding to analysis
because the cdc15 data set had a lot of missing points and the sampling intervals were not constant (10 or
20 minutes), while the elu data set had been sampled for one period, and only coarsely at that.

3. ASSESSING AND IMPROVING REGULATORY PAIR DETECTION

At least three software systems (Chen et al., 1999a, 1999b; Friedman et al., 2000) have been developed
to predict gene regulations using the Cho/Spellman time-series data. However, neither the data nor these
systems were rigorously evaluated as to the quality of the resulting predictions.

In this section, we demonstrate that the Cho/Spellman data is inherently inadequate to identify the
vast majority of known regulatory relations, when subjected to simple signal analysis techniques. We use
insights from this and a previous microarray data analysis (Chen et al., 1999a) to construct an edge detector
which appears better at selecting biologically interesting pairs of genes.

3.1. Evaluating known regulatory pairs

To analyze the potential for determining regulatory pairs from the Cho/Spellman data sets, we began by
constructing a database of known regulatory relations in yeast. Speci� cally, a keyword search (regulat*)
on the Yeast Protein Database (YPD) (www.proteome.com) performed in February 2000 yielded 1,007
regulated genes in yeast. By reviewing the published literature on these 1,007 genes, we collected 888
transcriptional regulations of which 647 were activations and 241 were inhibitions. Altogether, 486 genes
were involved in these transcriptional regulations.

We then mapped these 486 genes to the two highest-quality time-series data sets, cdc28 and alpha.
Genes mapped successfully if they had the same name in the Cho/Spellman data sets and our database
and in addition had no missing points in the time-series. The results are described in Table 2.

Only 366 genes were successfully mapped to the cdc28 data set, with the balance of 120 genes failing
primarily because of differing naming conventions between the literature and the data set. Of the original
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Table 2. Mapping Known Regulation Pairs (from YPD) onto
Cho/Spellman Data Setsa

YPD mapped # genes mapped # activations # inhibitions
onto data set (out of 486) (out of 647) (out of 241)

alpha 335 343 96
cdc28 366 469 155

aFour hundred eighty-six genes involved in 888 transcriptional regulations (647 activations
and 241 inhibitions) were mapped onto alpha and cdc28 data sets. The heading # genes
mapped indicates the number of successfully mapped genes (out of 486), # activations
indicates the number of successfully mapped activation regulations, and # inhibition indicates
the number of successfully mapped inhibition regulations (out of 647 and 241 respectively).

888 regulations, 469 activations and 155 inhibitions mapped correctly to the cdc28 data set. Onto the alpha
data set, we mapped successfully only the 335 genes for which all 18 time-series points were available.
These genes were involved in 343 known activations and 96 known inhibitions.

We assessed the predictability of regulation pairs of the Cho/Spellman data sets, by signal similarity
analysis, with the following three studies.

1. We performed correlation coef� cient analysis on each pair of activations in the 469 and 343 known
activating relations that were mapped on the data sets. The result, shown in Fig. 1, demonstrates a
poor correlation between the activators and the corresponding activated genes. Less than 20% of known
regulations (93/469 for the cdc28 data set, 44=343 for the alpha data set) scored > 0:5 correlation
between an activator gene and activated gene.

FIG. 1. Correlation coef� cient studies of known activation relationships. Correlating between curves of known
activations yields poor correlation for all 4 data sets—only 20% correlate over 0.5 (shift = 0). Shifting the time-series
of known activation pairs along each other (in the same data set) did not improve the correlation between them in
general.
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2. To compensate for a possible time lag of the biological process of activation, we shifted the activation
pair curves with respect to each other, but that did not improve the number of correlations for any shift
between §20 minutes, as shown in Fig. 1. These curve shifts were performed on resampled interpolated
data to facilitate short shifts.

3. Finally, eyeball examination by a PhD biologist (Zhi) of all plotted pairs of known regulations failed
to extract a common pattern which could indicate a possible transcription regulation in more than 20%
of these cases. The biological considerations were mainly signal similarity, knowledge of timing of
biological processes in yeast, and speci� c properties of the experimental procedures.

What these studies demonstrate is that simple signal similarity analyses cannot with certainty extract
more than 20% of regulation relationships from the Cho/Spellman data sets. This negative result is probably
due to a combination of the following: 1) many of the genes are regulated post-transcriptionally, which is
true for eukaryotes in general (this limits the use of microarrays in network prediction to transcriptional
networks), 2) the data sets describe the genes’ behavior under a very limited set of environmental conditions,
and so many regulators have not been expressed at all, 3) genes in eukaryotes have more than one activator,
likely more than two (Yuh et al., 1998), 4) the Cho/Spellman data sets are not precise enough to capture
biological phenomena essential for regulation (highly unlikely in general).

We can say the following though, that together these results con� rm the complexity of biological systems
and demonstrate that gene regulation is much more complicated than this model and data set can deal with.

3.2. An improved edge detection function

Although two genes within a regulated pair do not necessarily have similar expression patterns, ex-
pressionally correlated genes usually suggest a functional correlation. Thus, correlation coef� cient-based
clustering has been widely used in analyzing time course expression data (Eisen et al., 1998). The corre-
lation coef� cient method fails to pick up strong local signals, as opposed to global similarity, particularly
in noisy data. Here we propose an edge function, which was aimed to more accurately predict functional
correlated genes.

We set up two goals for our edge detector: a) to favor similarity of local signals on the curves, i.e.,
identify meaningful peaks in expression, and b) to act as a conservative and biologically signi� cant � lter
on the signals, so as to exclude meaningless events. As a result of these requirements, we expected very
similar curves to score high scores, but also visually dissimilar curves to perhaps score high enough to be
considered as in a regulation.

To facilitate further discussion we de� ne an edge as a piece-wise linear, monotonic function. Any piece-
wise linear function (e.g., a time-series curve) is an ordered list of edges of alternating direction (i.e.,
nonincreasing or nondecreasing). For our purposes, an edge can be considered to be a vector of the y

coordinates of monotonic linear functions, since the x coordinates are the sampling times—which are
same for all curves. Of importance to us will be, in particular, the edge’s minimum, maximum, and middle
(.minumum C maximum/=2) points.

We want our edge detector to � lter very conservatively, so we deem a point of the curve insigni� cant
if the difference in expression to both of its adjacent points is less than 10%. In addition, we � nd an edge
to be of biological signi� cance if its relative expression is more than 30%. Finally, we would like to score
all such biologically signi� cant edges (local signals) across time-series curves (genes).

All these considerations went into the following, locally based, edge detector algorithm:

1. For each gene, label the points as local minima, maxima, and in-between. While comparing the expres-
sion value of neighboring points, allow a given expression error level, typically 10%, between a point
and both of its adjacent points and erase the points that do not pass this threshold.

2. For each gene, the labeled minima and maxima are connected using a four-step edge construction
process:
² Primary edges. Connect neighboring local maxima and minima. In this way, each curve is decom-

posed into monotone segments (edges).
² Secondary edges. Erase all primary edges whose normalized expression, .max ¡ min/=average,

is smaller than a threshold, typically 30%. Here, max; min; and average pertain to the expression
level. This accounts for the minimal biologically signi� cant expression level change. Any changes
below this level are probably due to experimental error.
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FIG. 2. Interesting regulatory pairs detected by our edge function but not by correlation.

² Tertiary edges. Merge (if possible) consecutive secondary edges of the same direction. Possibly,
at the beginning of this step, we could have a number of consecutive edges that really are just
continuations of the same edge. So we connect them in this step. Note that although two consecutive
edges can have the same direction, it may not be possible to merge them because of monotonicity.
Those edges will stay separate.

² Quadrary edges. Eliminate narrow peaks or troughs, i.e., stray points, likely resulting from error
in measurement, that vary signi� cantly in relative expression from their adjacent points, typically a
factor of 2. For example, in Fig. 2(a), the narrow trough of CHA1 from time point 9 to 11 is probably
due to an error at time point 10. Thus, the edges from time points 9 to 10 and from 10 to 11 are
eliminated.

Finally, each gene is represented by an array of quadrary edges which we consider as biologically
signi� cant and reliable expression level changes.

3. Pairs of genes are scored solely based on their quadrary edges. To score genes Ga and Gb, we score
each quadrary edge (ea ) of Ga against each quadrary edge (eb) of Gb, provided the time difference
between the two edges is · ±max . The similarity score Sg between Ga and Gb is given as

Sg D
X

all e

d

³
1 ¡

±

±max

´ ¿
p

nanb

where d denotes the agreement of the slopes of ea and eb. Speci� cally, d D 1 if the signs of the slopes
agree; otherwise, d D ¡1. The parameter ±max de� nes the maximum allowable time difference (in
minutes) between the middle of ea and eb . A typical setting is ±max D 15 minutes for yeast expression
data sets. The parameter ± denotes the observed time difference (minutes) between the middle of ea

and eb, and 0 · ± · ±max . Interactions between edge pairs with time difference > ±max are considered
biologically meaningless and are simply ignored. Larger values of ± imply less similarity between the
edges. The counts na and nb denote the total number of quadrary edges in Ga and Gb, respectively.

It can be proven that, like the correlation coef� cient, the range of Sg is between ¡1 and 1, by noticing
that the slopes of the quadrary edges in any Gi alternate in sign.

3.3. Results

Our results showed that this algorithm identi� es certain interesting putative pairs missed by correlation
coef� cient methods, because we focus on local rather than global features.

We used the following methodology to evaluate the performance of our edge detector. A PhD level biol-
ogist (Zhi) manually compared all known regulatory relations in the alpha and cdc28 data sets, classifying
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them into sets: a) those which clearly revealed a possible regulatory relation and b) the rest (which clearly
did not reveal a regulatory relations or were inherently ambiguous). Only 27 of the 343 activations in the
alpha and 63 of the 469 activations in the cdc28 data sets were classi� ed in the positive group a, with the
remainder classi� ed in the negative group b. We looked only at activations since we had more of them to
work with; there were less than 10, and 20, respectively, inhibitions classi� ed in the positive group.

The result of scoring all gene pairs from the 335 alpha genes and 366 cdc28 genes are in Table 3. A
perfect classi� er/threshold pair would score only positive pairs above the threshold; i.e., it would simulate
our biologist, thus underwriting our belief that biological knowledge can be captured by looking at local
signals.

Table 3 demonstrates that our proposed edge scoring function misclassi� ed no pair above the 0.5 level.
The established ef� cacy of our edge detection function makes it interesting to study other high-scoring

pairs of genes, namely the 192 alpha pairs which correlated > 0:8 and the 223 alpha pairs which scored
> 0:5 using our edge function. For the cdc28 data set, 628 pairs correlated > 0:8 and 398 pairs scored
> 0:5 using our edge function. There is some agreement between the two scoring measures for 88 alpha
pairs and 127 cdc28 pairs occurring in both sets. Eyeball examination showed that all these common pairs
carried a characteristic strong and smooth oscillation pattern. However, we observed that certain interesting
pairs of genes using the edge function correlated poorly. For example, the pairs in Fig. 2: MAL33/MET6
correlated 0.32 and CHA1/SWI4 correlated 0.47. For MAL33/MET6, shifting the curve of MAL33 5 min,
10 min and 15 min to the right still brings the correlation coef� cient score to only 0.41, 0.42, 0.27,
respectively. In the case of CHA1/SWI4, the low expression of CHA1 at time point 10 is the main reason
why the correlation coef� cient scored low. Our edge function, which decided this time point was probably
experimental error and ignored it, scored it well.

In conclusion, we believe our edge function provides an interesting method to analyze time-course
gene-expression data. More results of our experiments are available at www.cs.sunysb.edu/»skiena/gene.
Figure 3 shows that the collection of highest scoring regulatory pairs in alpha are well distributed among
many genes. While we do not propose that such a diagram yields any semblance of the complete regulatory
network, we do believe these pairs warrant further study. As more accurate experimental data emerges,
perhaps with error bars, such edge detection functions should become even more reliable and predictive.

Table 3. Comparing Classi� cation Performance of the Correlation
Coef� cient and Our Edge Functiona

Alpha data

Correlation coef� cient Edge function

Thresh Total Good Bad Thresh Total Good Bad

> 0:85 107 5 0 > 0:6 96 5 0
> 0:8 192 5 2 > 0:5 223 5 0
> 0:7 703 5 7 > 0:4 557 7 6
> 0:6 1852 9 13 > 0:3 1581 11 15

Cdc28 data

Correlation coef� cient Edge function

Thresh Total Good Bad Thresh Total Good Bad

> 0:85 289 2 2 > 0:6 146 1 0
> 0:8 628 5 4 > 0:5 398 3 0
> 0:7 1826 22 15 > 0:4 1236 11 3
> 0:6 3903 31 19 > 0:3 3401 19 20

aFor each dataset, the two measures classify the positive pairs present among all pairs of genes
passing a given threshold. A positive pair is classi� ed either correctly (good), or incorrectly (bad). The
heading total indicates the total number of gene pairs (out of 335*334/2 for alpha and 366*365/2 for
cdc28) passing a given threshold.

http://www.cs.sunysb.edu/%7Eskiena/gene
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FIG. 3. Network of highest scoring activations in alpha data set.

4. INTEGRATED ANALYSIS OF DATA SETS

An integrated analysis of the Cho/Spellman data sets could yield more information than would analyzing
each data set separately, especially since the experiments entailed different environmental conditions. Two
evident applications could bene� t from such an analysis: 1) interleaving the signals from all data sets
for each gene, to obtain an integrated data set of higher precision and accuracy than any of the original
ones, through smaller gaps between sampling times; and 2) comparing the integrated time-series to reveal
genes whose expression grossly differs in one data set from the rest. This would be indicative of either
experimental error or genes whose expression is effected by one of the synchronization factors.

Thus, we sought to integrate the data, so as to render the curves from different data sets comparable to
each other. For a similarly motivated study of the same data sets, independent of ours and done in roughly
the same period of time, see Aach and Church (2001).

Our approach is to simply interleave the 4 time-series curves for each gene over the same coordinates.
Such interleaving of the data sets requires identifying the cell cycle periods of each data set as well as
detecting the cell cycle phase each experiment started in after synchronization. Since the experimenters
(Spellman et al., 1998) grossly observed the cell cycle length of each time course and the cycle phases in
which the cells were arrested, we have a way to assess the performance of our algorithms.

4.1. Cycle detection in microarray data

Fourier analysis is the standard method of identifying cycles in periodic data sets when the number
of sampling points is large, but this is not the case with the gene expression data sets. It has been
shown (Klevecz and Dowse, 2000) that Fourier analysis does not pick up some important characteristics of
microarray data sets, possibly because of their coarseness. Instead, we explored how well discrete similarity
methods work, which we used for analyzing short sequences (Chen et al., 1999a). We have previously
explored geometric approaches to cycle detection (Filkov, 2000).
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To detect the cell cycle of a data set, we � rst analyze the similarity of a time-series curve with itself.
Since each yeast gene’s expression follows the general cell cycle if it exhibits any cycling behavior, we
expect that this method will detect the periods of the cycling genes while extracting random periods for
the noncycling genes. Thus, we expect the period of the data set to become apparent when we average
over all genes.

4.1.1. Methods and results. We chose the Pearson correlation coef� cient (“correlation coef� cient,” or
simply “correlation” in what follows) to be our similarity measure of two time-series curves with equal
sampling times, xi ; yi of length n,

r.X; Y / D
P

xiyi ¡
P

xi
P

yi=n
q

.
P

xi
2 ¡ .

P
xi/

2=n/.
P

yi
2 ¡ .

P
yi /

2=n/

: (1)

This correlation coef� cient is known to give good results when employed in clustering and analyzing
time-series (Eisen et al., 1998; Spellman et al., 1998). Curves that are visually very similar typically score
as being highly correlated.

Consider a time-series curve (vector) C D .c1; c2; : : : ; ck/. If C is periodic with period T , the similarity
of a pre� x “window” Pt .C/ D .c1; c2; : : : ; ct/ with the same-length suf� x “window” immediately following
it St .C/ D .ct ; ctC1; : : : ; c2t¡1/ should be greatest when their length equals (up to an integer) the period
of the whole curve, i.e., t D T . Thus, by varying the length t of the window, we can � nd the optimal
period for each gene. For each data set, we correlated Pt .C/ with St .C/ over all curves, for all t , where
5 · t · 12. The constant 5 denotes the length of the shortest sequence for which we deemed the correlation
coef� cient as having predictive power. Length 12 was one half of the longest sequence we had. When

FIG. 4. Inferred periods for all data sets using standard correlation coef� cients. The window size (x axis) indicates
the number of sampling intervals for each data set, and the # of genes (y axis) indicates the number of genes for
which, when correlating a pre� x and a suf� x of equal lengths (of the gene’s time-series), the length “window size”
correlated the highest.
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2t ¡ 1 > k, we truncated the suf� x “window” on the left, i.e., St .C/ D .ckC1¡t ; ck¡t ; : : : ; ck/. For each
gene Ci , the inferred period was the t that maximized r.Pt .Ci/; St .Ci//. Then, for each window length
t D 5; : : : ; 12, we counted the number of genes, with inferred period equal to t . The results of repeating
the above procedure over all data sets are shown in Fig. 4, where window lengths are converted from
number of sampling points to time intervals for easier conversion to absolute time.

As is apparent from Fig. 4, the uncorrected correlations are not suf� cient to detect the periods, for even
though the actual cell cycles are in fact strongly expressed in all the graphs, they are not necessarily the
most strongly expressed. Moreover, we notice that there is an overall tendency towards smaller periods,
i.e., all graphs being somewhat skewed towards left.

In addition, there are very strong indications of underlying oscillatory phenomena with periods smaller
than the observed cell cycles. One is on the order of 3 sampling points or approximately 20 minutes for
alpha, and another of a period around 40 minutes. This last phenomenon was also reported by Klevecz
and Dowse (2000). These frequencies are apparently undetectable by Fourier analysis, but can be found
with methods suitable for analysis of short, coarsely sampled sequences like ours or by wavelet analysis.

We note that the elu graph did not show any oscillations, due probably to the coarseness of the sampling,
the fact that the experiment was performed for less than one cell cycle, and possibly the inability of the
above method to detect it.

4.1.2. Correcting for correlations of sequences of different length. Our cycle detection algorithm re-
quired comparing correlations of sequences as short as 5 (4 time units) with correlations of sequences as
long as 12 (11 time units) in analyzing the Cho/Spellman data sets. However, high correlations are more
likely to occur by chance on short sequences than long sequences. This phenomenon caused the curves of
Fig. 4 to be skewed towards smaller shifts. Here we propose a statistical method to correct for it.

To determine the likelihood of each correlation value occurring by chance, we ran a Monte Carlo
simulation study by generating twenty-million pairs of sequences of different lengths, each pair yielding

FIG. 5. Cumulative distribution function of positive correlation coef� cients for sequences of length 4 to 11, from a
Monte Carlo study of 20,000,000 sequence pairs, with values distributed as the measured values in the Cho/Spellman
data sets.
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a correlation value. Each sequence was generated from the distribution of the experimental expression
values, where consecutive values in the sequence were assumed to be independent. The results, given in
Fig. 5, give the statistical distributions of the correlation coef� cient for various lengths. Finding analytical
forms for these distributions is known to be a dif� cult problem (Snedecor and Cochran, 1980).

Given any two sequences of length bounded by our study, Fig. 5 gives the likelihood of their correlation
occurring by chance. We used those likelihoods to correct for the observed “skewing” phenomenon. Namely,
we used the same procedure as in the previous section, but this time the period for each curve was inferred
to be the window length for which the correlation value had the smallest likelihood of occurring by chance.

Corrected plots are provided in Fig. 6. Clearly, the oscillations in the raw data have been dampened
and even eliminated. Moreover, the corrections have revealed peaks around a single time point for all data
sets except the elu data, which in fact did not cycle. For each data set, the period is given by the window
length corresponding to the peak. Thus, we deduce that the periods are 70 minutes for alpha, 100 minutes
for cdc28, and 90 minutes for cdc15. As shown in Table 1, these computational results match the observed
cycle times very well.

4.2. Phase shift detection

In addition to changing period lengths, cell synchronization procedures leave cells in different stages of
the cell cycle. These phase shifts must also be recovered to interleave the data.

To detect shift we used a method similar to the one for cell cycle detection or above, but this time we
correlated across data sets. Using the periods of the time-series computed in Section 4.1, we normalized
the periods of the cdc28 and cdc15 time-series curves with respect to the alpha data set so that all resulting
time-series had the same period length. Then, by correcting for different length sequences, we correlated

FIG. 6. Inferred periods for all data sets using length-corrected correlation coef� cients. The window size (x axis)
indicates the number of sampling intervals for each data set, and the # of genes (y axis) indicates the number of genes
for which, when correlating a pre� x and a suf� x of equal lengths (of the gene’s time-series), the length “window
size” correlated the highest. The inferred cell cycle period corresponds to the “window size” at the peak (alpha—10,
cdc15—9, cdc28—10, elu—/).
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FIG. 7. Inferring phase shift for all pairs of alpha, cdc15, and cd28 data sets. Inferred phase shifts: approximately
at the peaks of the curves.

the overlap of corresponding time-series curves from different data sets, by � rst aligning them at the
experiment start point and then shifting one to the right, down the ticks of the other, across all possible
shift lengths, up to the cell cycle of alpha, obtaining for each ORF pair a shift vector of correlations. By
summing up these shift vectors for all curves, we obtain frequency distributions and can establish which
shifts maximized the correlation for most curve pairs.

The results, provided in Fig. 7, demonstrate that alpha and cdc15 are unshifted relative to each other,
while cdc28 shifts 1 to 2 time periods from cdc15. The results are less clear comparing alpha to cdc28,
likely representing a shift of from 0–2 units. In fact, the alpha and cdc28 time-series both started in the
G1 phase of the cell cycle, and cdc15 in the M phase (Spellman et al., 1998). Our observed shifts are
basically on target. For the transformed periods of roughly 70 minutes each, the computed shift offset of
14 minutes lies within the M ¡ G1 time difference, since the M phase occupies roughly 50% of the cell
cycle time and the G1 roughly 15%.

5. CORRELATION AND SMALL ALPHABETS

The correlation coef� cient is highly regarded as a measure of similarity between pairs of sequences and
has been widely used to analyze gene expression data (Eisen et al., 1998). However, over the course of our
work with this (and other) experimental data, indications arose that the correlation coef� cient may perform
very badly in comparing sequences drawn over small, � nite alphabets. Such data arises naturally when
attempting to smooth noisy data signals by quantizing them into a small number of bins, or as an output
from a microarray scanning algorithm that classi� es mRNA concentrations into three groups: up, down,
and neutral (e.g., output from an Affymetrix chip scanner). Thus, we became interested in the behavior of
the correlation coef� cient on sequences over a small set of values, i.e., sequences over small alphabets.
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FIG. 8. Maximal, minimal, and average correlation coef� cient values for any given Hamming distance between two
two-letter-alphabet sequences of length 1,000.

We restricted our attention to the limiting case of sequences over two letter alphabets. For such sequences,
we studied the behavior of the correlation coef� cient as compared to that of the Hamming distance (number
of positions in which two sequences disagree). Our study is described in detail in Filkov et al. (2001).
Here we only summarize the results.

We computed all possible correlation values of any pair of two-letter-alphabet sequences using Formula 1.
The obtained correlation values were grouped in classes—each class containing the correlations of sequence
pairs with the same Hamming distance. In each class (i.e., for each Hamming distance), the maximum,
minimum, and average correlation values were calculated and plotted as shown in Fig. 8. It is evident from
the � gure that even though the average correlation graph indicates expected behavior of the correlation
coef� cient, the upper and lower bounds demonstrate that even for very small Hamming distances, the
possible range of correlations is distressingly large.

In fact, as shown by Filkov et al. (2001), this is true for two-letter-alphabet sequences of general length.
For example, when correlating two sequences of length n which differ in only one position, it is possible
to get a correlation of 1=

p
2 ¼ 0:7067 for large n. Furthermore, two sequences which differ in two of the

n positions can possibly correlate to ¡1=.n ¡ 1/ ¼ 0 for large n.
We conclude that the correlation coef� cient is inadequate as a similarity measure of two-letter-alphabet

sequences and must be viewed with caution in measuring the similarity of quantized or small alphabet
sequences.
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