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Abstract Open Source Software (OSS) project success relies on crowd con-
tributions. When an issue arises in pull-request based systems, @-mentions are
used to call on people to task; previous studies have shown that @-mentions in
discussions are associated with faster issue resolution. In most projects there
may be many developers who could technically handle a variety of tasks. But
OSS supports dynamic teams distributed across a wide variety of social and
geographic backgrounds, as well as levels of involvement. It is, then, important
to know whom to call on, i.e., who can be relied or trusted with important
task-related duties, and why.

In this paper, we sought to understand which observable socio-technical at-
tributes of developers can be used to build good models of them being future
@-mentioned in GitHub issues and pull request discussions. We built overall
and project-specific predictive models of future @-mentions, in order to cap-
ture the determinants of @-mentions in each of two hundred GitHub projects,
and to understand if and how those determinants differ between projects. We
found that visibility, expertise, and productivity are associated with an in-
crease in @-mentions, while responsiveness is not, in the presence of a number
of control variables. Also, we find that though project-specific differences ex-
ist, the overall model can be used for cross-project prediction, indicating its
GitHub-wide utility.
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1 Introduction

In modern, social-coding [20] projects based on sites like GitHub and Bit-
Bucket, that favor the pull-request model, the emergence and growth of a
particular type of socio-technical link, @-mentions, can be observed in task-
oriented technical discussions. For example, in the rails project on GitHub
(issue 31804), one of the head developers calls on another, explicitly stating
trust of their expertise, saying: “@kamipo can you take a look since you are
our MySQL expert?” On GitHub, the @-mention in issue discussions is a type
of directed social link; the @-mentioner “calls” the @-mentionee via a directed
communication that is sent to the @-mentionee through GitHub’s interface.
Thus, one can consider the network of @-mentions, specifically calls, as a sort
of directed social network, with a task-oriented purpose. These mentions are
heavily used in social coding; in our data, a sample of the most followed and
starred projects on GitHub, 52.46% of issues and 22.02% of pull requests con-
tain at least one @-mention, with an average of 1.46 and 1.37 @-mentions
per issue or pull request (respectively). On average, developers who are called
(while not yet actively participating in the thread) respond 19% of the time;
the number rises to 42.94% when excluding those who never respond1. @-
mention ubiquity reflects the central role they play in task-oriented social
interactions on GitHub. Since much of a developers behavior in OSS projects
is recorded, if a person has the expertise and/or are reliable in many different
tasks, they will be visible to others. The decision to @-mention someone will
be based on visible attributes of that developer, including reliability, produc-
tivity, etc. Identifying a reliable and knowledgeable person to ask for help or
action is key to addressing issues in a timely manner and keeping a project vi-
brant and alive. In fact, Yu et al. found that having @-mentions in a discussion
decreases the time to resolve an issue [62]; Zhang et al. found that more diffi-
cult issues (e.g., longer length of discussion) have more @-mentions [65]. Given
these important outcomes, it would be beneficial to know what (observable)
socio-technical attributes of developers contribute to being @-mentioned.

As @-mentions have an inherent social element, a global model describing
the determinants of @-mention calls would suggest that project-specific social
idiosyncrasies are less important than social elements common across GitHub.
A global GitHub model for @-mentions may be seen as constructive, since
shared social norms across the ecosystem can increase social mobility [54]; on
GitHub, this may make the acculturation process easier for those who move
between projects. In addition, the findings of Burke et al. [11] suggest that
those who perceive themselves as socially central contribute more as a result -
this may extend to code contributions on GitHub. The findings of Kavaler et al.
[36] suggest global and project-specific social phenomena (apropos language
use) exist on GitHub; is this the case for @-mentions? Or does one phenomenon
dominate?

1 E.g., developers of upstream libraries rarely respond in the downstream project.
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The goal of this paper is to understand both the elements contributing
to @-mentions in GitHub projects and the extent to which those elements
are shared between projects across GitHub. @-mentioning is a complex, mul-
tidimensional phenomenon. Developers that are often @-mentioned can have
outsized roles and responsibilities in the project network, and be able to handle
any task. Thus, a frequently @-mentioned person could well be a strong, highly
visible contributor, who might be a trustworthy collaborator on an active task.
Whereas visibility can be operationalized more directly, based on a person’s
aggregate presence in all aspects of the social coding process, both reliability
and trust are more complex: we describe the theoretical background for these
in the next section. Starting from those theories, and from data on @-mentions
and comprehensive developer and project metrics from 200 GitHub projects,
we seek a predictive, quantitative model of future @-mentions of a developer,
using past observations of the developer’s visibility, expertise, productivity,
and responsiveness in their projects. From our quantitative models, together
with case studies aimed towards triangulating the model results,

– We find that we can mine a reliable @-mention signal from GitHub data,
in ways consistent with current theories in sociology, psychology, and man-
agement.

– We see a net positive effect of visibility on @-mentions. We see that less
expertise (via, e.g., commits that need fixing, likely buggy commits) asso-
ciates with lower @-mentions when one has already been @-mentioned, and
higher @-mentions if one has not already been @-mentioned; perhaps ex-
plained by the idea that any contributions, even defective ones, associates
with an initial @-mention, consequently adjusted. We see positive effects
for productivity, and none for responsiveness.

– We find that cross-project model fits are generally good, suggesting a com-
mon model of @-mentions across GitHub. Similarities among the models
are greater for enhanced @-mentions after the first @-mention, than for the
initial one.

– We see indications of project-specific @-mentioning behavior, however, the
high performance of cross-project prediction suggests the differences may
matter little, especially for predicting @-mentions.

We present the theory and research questions in Section 2, research ques-
tions in Section 3, data and methods in Section 4, results and discussion in
Section 5, practical implications for practitioners in Section 6, threats to va-
lidity in Section 7, and conclusions in Section 8.

2 Theory and Related Work

To understand the notion of @-mentions in OSS projects, we build a theory
drawing from diverse sources. First, we discuss @-mentions and their use on
GitHub, supported by prior work. Then, we introduce theory behind GitHub
@-mentioning drawn from work regarding reliability and trust in the fields
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of sociology, psychology, and management. We then discuss the importance
of social exchange and interaction (and thus, the importance of @-mentions)
on OSS project success. Finally, we compare our work to that in the field of
expertise recommendation.

2.1 @-Mentions on GitHub

GitHub projects have issue trackers with a rich feature set, including ticket
labeling, milestone tracking, and code tagging. In GitHub projects, individuals
can open up an issue thread where others can comment and discuss a specific
issue. In these discussions, developers can tag others using @-mentions; the
mentioned developer receives a notification that they are being referenced
in a discussion. When one decides to @-mention another developer, there is
generally a specific reason, e.g., to reply to a single person in a discussion
involving many others; or, to call the attention of someone who isn’t currently
in the discussion. The latter aspect is what we wish to capture; calling upon
another person is an implicit (and on GitHub, often explicit) statement of
belief that the receiver could help address the task at hand. To validate the
importance of modeling call @-mentions on GitHub, we perform a case study
(Section 5.1) and also look to prior literature (below) for the reasons behind
the use of @-mention.

Tsay et al. performed interviews with several developers of popular projects
on GitHub, specifically related to the discussion and evaluation of contribu-
tions [59]. They found that both general submitters and core members use @-
mentions to alert core developers to evaluate a given contribution or start the
code review process. They further found that core members often @-mentioned
other core members specifically citing that the @-mentionee is more qualified to
answer a particular question or review a given contribution. In nearly all cases,
the @-mention seems to be used to draw the attention of a developer who may
contribute to the task at hand. Kalliamvakou et al. surveyed and interviewed
developers, mostly commercial, that use GitHub for development [35]. Of all
interviewees, 54% stated that their first line of communication is through the
@-mention2. In addition, they state that teams often use the @-mention to
draw members’ attention to a problem. 3

2 Developers were asked about communication methods, not explicitly the @-mention.
3 Described in Section 4.2, a reply @-mention is directed towards someone already in the

discussion; a call @-mention is directed towards someone not yet in the discussion. In our
data, there is indeed a very high correlation between reply @-mentions and discussion length
(0.812); however, there is a relatively low correlation between call @-mentions and discussion
length (0.283). As our focus is on call @-mentions, correlation between reply @-mentions
and discussion length is not a threat.
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2.2 @-Mentions and Personal Reliability

The ability to rely on others socio-technically is critical for cohesive work-
groups. From a social perspective, Saavedra et al. argue that reliable interac-
tions among group members are important for success, especially when tasks
are interdependent [53]. According to social learning theory, frequent interac-
tions among group members increases the likelihood that some in the group
will be raised to “role model” status [3,4]. The importance of role models in
social learning has been widely discussed [4,11,21]. On GitHub, researchers
have found that these role models (“rockstars”) are important influencers,
allowing developers to learn from “rockstar” code contributions in order to
improve their own work [20,39]. In other words, developers rely on others
within and outside their immediate working group in order to solve problems.
In addition, peer code review (relying on team members other than the au-
thors for manual inspection of source code) is recognized as a valuable tool in
software projects [1]. Thus, we argue that identifying these reliable developers,
by means of the @-mention, is important for project success. We theorize that
reliability will manifest itself on GitHub through responsiveness, measuring: if
you are called, how often do you answer?

2.3 @-Mentions and Trust

Trust has a long-recognized complex [42,24] social component and well un-
derstood benefits to social and economical well-being [32,45], in both physical
and virtual teams [33]. While individuals do have a personal notion of when
to trust someone, in social settings those notions inherit from the communal
sense of trust [45,33,32]. In socio-technical groups like software projects, con-
tributors must be trusted as technically competent, and also as useful to the
project. Gaining contributor status is a key indicator of trust, which has been
extensively studied [6,56,15,25,22]. In pull-request oriented models, with de-
centralized repositories, anyone can make changes in a fork, and then submit
the changes as a pull-request. Here, social processes such as code-review take
a central role in deciding the fate of code contributions. Opinions from trusted
people during the relevant discussions would be in great demand, and thus,
the social demand on a person is an indication of the trust placed upon them
by the community. Since the pull-request model is more or less normative in
GitHub projects, it is reasonable to posit that many projects in the GitHub
community ecosystem may share the same determinants @-mention extension,
i.e., the reasons behind @-mention extension may be a global phenomenon.

We acknowledge that an @-mention does not necessarily arise purely to
trust in the taggee; however, some form of trust likely plays a role. Thus,
understanding theories of trust is important to understanding @-mentions on
GitHub.

Oft-mentioned and widely discussed, the meaning and role of trust has
been examined across many disciplines, including sociology, psychology, and
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philosophy [66,10,38,9,30]. Gallivan provides a succinct set of definitions for
trust types as provided by prior work on organizational trust [24]; relevant
types for GitHub are: 1) Knowledge-based trust : trust based upon a prior
history of transactions between two parties; 2) Characteristic-based trust : trust
that is assumed, based on certain attributes of the other party; and 3) Swift
trust : a “fragile” form of trust that emerges quickly in virtual workgroups and
teams.

For our work, the idea of swift trust is important as it is theoretically
defined for virtual teams, as on GitHub. Jones and Bowie [34] state: “the
efficiency of [virtual teams] depends on features - speed and flexibility - that
require high levels of mutual trust and cooperation”; other researchers share
and expand on this notion [47,28]. Though swift trust may initially appear
most applicable, much of the founding work was done prior to the prolifera-
tion of socio-technical systems such as GitHub. More recently, Robert et al.
redefine swift trust for modern systems as a combination of classical swift
trust, knowledge-based trust, and parts of characteristic-based trust [50]. We
agree with this blended definition - a sweeping categorization of GitHub as
having a swift trust system is likely incomplete; multiple trust regimes proba-
bly apply. We capture knowledge-based trust through our measures of visibil-
ity, i.e., functions of @-mention network degree. Characteristic-based trust is
also likely; task characteristics can be easily seen on GitHub, as captured by
measures of expertise and productivity.

2.4 @-Mentions and Social Exchange

On GitHub, the @-mention is a type of directed social link; the @-mentioner
causes a notification to be sent to the @-mentionee through GitHub’s interface,
a form of social communication. Thus, the network of @-mentions is a sort of
social network, with a task-oriented purpose. Much work has been done in
variety of fields on identifying reasons behind social tagging and mentioning
behavior, including on GitHub [63].

In the fields of psychology and sociology, many researchers have explored
the phenomenon of social tagging on Facebook [49,12,46]. In general, this
research has shown that social tagging provides a sense of community and
increases one’s social capital. These findings are of importance to GitHub
as they elucidate the importance of community social interaction, which are
known to be important to OSS success [26,25]. Of specific interest, Burke et al.
found that those who receive feedback on their Facebook posts share more [11].
It is reasonable to believe that this extends to task-oriented networks, such as
GitHub; those who feel as though their contributions are important, socially
or technically, are likely to contribute more.

McDonald et al. interviewed multiple GitHub developers and found that
they rarely use product-related measures (e.g., release quality, bug fixes) to
describe project success; rather, they use measures such as number of (new)
contributors, pull requests, etc. [41]. As stated above, social exchange is im-
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portant to both one’s own well-being and OSS success. As social measures
have been shown to be important for OSS product success [29], and given that
developers generally use non-product measures to describe project success, fos-
tering the use of @-mentions and thus the exchange and gain of social capital
would be beneficial for both metrics of success. We capture social aspects in
visibility - functions of @-mention network measures.

2.5 @-Mentions and Discourse/Dialogue

Discourse and dialogue have seen a resurgence of research interest with the
advent of NLP computational methods. Stolcke et al. [58] have most promi-
nently defined discrete conversational speech categories into which @-mentions
fit well, perhaps because they themselves are social link extensions. Stolcke’s
et al. [58] work and the other aforementioned prior work [59,35], helped us
distill the following four categories of speech that use @-mentions (one of these
is a slightly modified category as compared to Stolcke’s work, marked by ?):

1. Request (R): An explicit request towards the called person to perform
some action.

2. Request-Suggest (R-S): An implicit request towards the called person
to perform some action.

3. Inform (I): An indication that the issue or post is relevant to the called
person.

4. ?Credit Attribution (CA): An @-mention designed to attribute credit
to the called person. This is similar to “Thank” by Stolcke et al. [58], but
explicitly directed at an individual.

We use these categories in a case study examining reasons behind call
@-mentions in Section 5.1.

2.6 Expertise Recommendation

As our interest is in @-mentions, often used to call upon those with expertise
relating to the task at hand, we compare our work with that in the field of
expertise recommendation. Cubranic and Murphy [44] used text classification
on data from the Eclipse bug tracking system in order to identify developers
relevant for a given bug; Matter et al. performed a similar study [40]. Like-
wise, Mockus and Herbsleb developed and deployed a tool to identify expert
developers [43] working on proprietary software. More directly relevant to our
work, Ibrahim et al. developed a tool to identify which developers should con-
tribute to a given discussion on mailing lists for three open source projects [31].
Though our work is similar in spirit to that in the field of expertise recommen-
dation, our focus is specifically on the calling signal itself (@-mention). This
goal is unique from expertise identification and recommendation as our goal is
to identify reasons behind the signal extension itself, rather than identifying
the best receiver of said signal.
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3 Research Questions

@-mentions signal a desire for a developer’s involvement in a task-oriented
discussion. GitHub is a rich source of mine-able, potentially relevant, developer
characteristics.

The theory above allowed us to identify relevant dimensions along which
to model the phenomenon of @-mentions. We describe them shortly here, and
operationalize them in the Methods section. Visibility measures the ability of
others to know of a developer; if a developer is to be @-mentioned, people
must know the network in order to know who they are capable of reaching.
Expertise can be defined through task-related measures, e.g., number of likely
buggy commits, which might influence how much a developer is @-mentioned.
Productivity is defined by number of commits; prolific committers could be
viewed as the “top brass” of a project, and commits are easy to see in GitHub.
Finally, we are interested in responsiveness; if a mentionee is called to lend
their talent, it is not farfetched that those who respond to the call are more
likely to be @-mentioned in the future.

We explicitly model future @-mentions, i.e., @-mentions as measured 6
months beyond the “observation period”, described further in Section 4.6.
Having an effective model that explicitly predicts future behavior has higher
utility to potential future applications than an aggregate regression model over
the whole history.
RQ 1: Can we describe/predict future @-mentions in terms of de-
veloper visibility, expertise, productivity, and responsiveness?

Our second question relates to the utility of our model. If one wishes to
use our model on their own projects, it would be helpful to be able to use the
model pre-trained on some data, e.g., trained entirely on a separate project
and applied to one’s own.
RQ 2: Can models trained entirely on one project be reliably used
to predict @-mentions on another project?

Our third question is more theoretical in nature. Specifically, we wish
to describe the differences between projects in terms of our determinants
of @-mentions and identify some potential reasons behind these differences.
As GitHub is composed of subcommunities which may have some idiosyn-
crasies, we believe that these differences may be reflected in our describers of
@-mentions.
RQ 3: Is there evidence of project-specific @-mention culture? Or
are the determinants of @-mentions a GitHub-wide phenomenon?

4 Data and Methodology

All data was collected by querying GitHub’s public API using the Python
package PyGithub4, with the exception of issue fixing data, which was gath-
ered by cloning individual repositories. Commits are found through the official

4 https://github.com/PyGithub/PyGithub

https://github.com/PyGithub/PyGithub


Whom Are You Going to Call? 9

GitHub API, including commits within and without pull-requests. Developers
for a given commit are identified automatically by inspecting the commit’s
specified author within git, and querying GitHub for an existing user with the
same name. If no GitHub user is found, the commit is not attributed to any
user in our data. Data was gathered during the month of July 2017.

4.1 Filtering and Cleaning

For our data set, we looked at the top 900 most starred and followed projects,
each of which likely to contain enough issues and commits for us to model
robustly. The number of stars and followers are proxies for project popularity.
We noted that among the 900 projects there was a significant difference in
popularity among the 1st and the 900th project. Some of the measures we
used are expensive to calculate, so we had to limit our calculations to a smaller
sample. We chose as our sample a random subset of 200 of those 900 projects.
The choice of a random sample, as opposed to, say, the very top 200, was made
to ensure we captured a diverse mixture of projects in terms of popularity, and,
thus, have a more widely applicable results from the modeling.

Due to our described project selection method, it is possible that non-
software projects are within our final sample. However, our research questions
are not software specific; our findings are meant to reflect the whole of GitHub
- primarily software, but also projects focused on other goals (e.g., books and
link collections).

We ran multiple parallel crawlers on these 200 projects to gather commits,
issues, pull requests, and associated metadata. Due to some internal issues
with the PyGithub package5, some projects failed to return complete data.
We created a verification system (completely external to PyGithub) to deter-
mine which projects were incomplete, and removed them from consideration.
Finally, we only consider developers with at least one commit to their given
project in order to avoid a proliferation of zeros in our covariates, as many de-
velopers participate in issue discussions but never contribute. This was done
in order to focus on those who may become @-mentioned in the future; with-
out any commits, we argue it is unlikely to be @-mentioned in the future. To
support this claim, we note that in our data, the average number of future
@-mentions for those with zero commits is 0.382 with a standard deviation of
1.98 commits; in contrast, the average number of future @-mentions for those
with more than zero commits is 1.98 with a standard deviation of 10.62.

As we wish to explicitly model future @-mentions, we introduce a time split
in our data. For each project, we define a time frame under which we “observe”
the project and its participants, and model our response as calculated beyond
our observation time frame - the “response” period. We decided to set our
response period as 6 months, i.e., 6 months prior and up to the end of our data.
We also tested periods of 3 and 12 months; 3 months had little difference to 6

5 PyGithub did not handle properly some Null responses from GitHub’s API.
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Fig. 1: The network creation process. Shown is a discussion thread and the
resulting reply and call networks. Note this can be a multigraph (not shown).

months, and 12 months left us with too little data to model. We then filtered
out each individual who had a project participation shorter than 3 months.
This is because with 2 months of data, there exists only one line which can
be fit: the line with the first month as the start point, and second month
as the end point. With 3 (or more) data points, there exists more between-
and within-subject variance to be captured by the model, further reducing
the worry of overfitting, as there are multiple lines which may fit ≥ 3 data
points. Thus, we explicitly model future @-mentions, as our response period is
disjoint from our observation period. In total, this yielded 154 unique projects
comprised of 17, 171 project-developer pairs to test our hypotheses.
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4.2 Issues and @-Mentions

For each project on GitHub, individuals can open up an issue thread where
others can comment and discuss a specific issue6. We constructed a social
network for each project using @-mentions in their issue comment threads;
Fig. 1 depicts this process. Similar to Zhang et al. [64], i.e., every edge (u, v)
is developer u @-mentioning v somewhere in their post. This yields a directed
multigraph; there can be multiple edges (u, v) depending on how many times u
@-mentions v. We distinguish between two edge types: reply and call. A reply
edge is defined by u @-mentioning v when v has already posted in the given
thread. A call edge is defined by u @-mentioning v when v has not yet posted
in the given thread. Thus, a call edge is representative of the phenomena we
wish to measure, described in Section 2; u calls upon v as u wishes for v’s
input for the discussion at hand.

4.3 Focus

As a measure of visibility, we wished to capture phenomena more nuanced than
merely raw indegree and outdegree7, as raw degree counts do not take into
consideration the larger, neighborhood view. Standard global measures used
in social network analysis are often too expensive to calculate for our large
@-mention networks8. Thus, we require a measure that takes into account a
more global view that is relatively inexpensive to calculate. Here, we introduce
the idea of social focus in the @-mention network.

Theoretically, we believe that when given many choices on who should
be contacted (@-mention), individuals must make a decision, based on their
knowledge of the potential receiver’s characteristics (e.g., ability to help in a
task) and who is more readily visible. In social networks, knowledge of others is
propagated through existing links. Thus, if an individual is highly focused-on,
it is likely that they will become more so in the future. This means that the
more focused-on a developer is, the more visible they likely are. In addition,
those who have lower social focus on others, i.e., they distribute their out-links
widely among many others, are also more likely to be visible to others.

To represent focus, we adapt a metric described by Posnett et al. [48].
This metric is based on work by theoretical ecologists, who have long used
Shannon’s entropy to measure diversity - and its dual, specialization - within a
species [27], and can be derived from Kullback-Leibler divergence. For discrete
probability distributions P andQ, Kullback-Leibler divergence (KL) is defined
as:

DKL(P |Q) =
∑
i

Pi ln
Pi
Qi

6 Note that pull requests are a subset of issues.
7 Though we do use outdegree in our model as well.
8 E.g., standard algorithms require a full adjacency matrix to be in memory at once;

memory will be exhausted for networks of our size.
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Bluthgen et al. define a species diversity measure, δ9, using DKL [8]. This
measure is calculated naturally in a bipartite graph formulation, where each
species in the graph has its own diversity value δi. Posnett et al. use this metric,
normalized by the theoretical maximum and minimum (i.e., so δi ranges from
0 to 1), to measure “developer attention focus” (DAF ) [48]. When δi (a row-
wise measure) is high, developer i is more focused in commits to a fewer
number of modules. Analogously, when δj (a column-wise measure) is high,
module j receives more focused attention from fewer developers. They call
these quantities “developer attention focus” (DAF i) and “module attention
focus” (MAF j)10.

In this work, we take these definitions and expand them to the social
network of @-mentions. Recall that we distinguish between two types of @-
mentions: reply and call. We can likewise represent our social network as a
bipartite graph, where the rows and columns of the adjacency matrix both
refer to developers, and each cell suv is the count of directed @-mentions from
developer u to developer v for a given @-mention type. Thus, we analogously
define ρu as the focus developer u gives in their reply @-mentions, and ρv as
the focus developer v receives from others’ reply @-mentions. Similarly, we
define κu as developer u’s focus in their call @-mentions, and κv as the focus
developer v receives from others’ call @-mentions.

Recall that we can interpret these values equivalently as a measure of
specialization or inverse uniformity. For example, if ρu is large, developer u
specializes their replies to a select group of others; if ρu is small, developer u
uniformly replies to all others. Likewise, if κv is large, developer v is called
by a select group of others; if κv is small, developer v is called uniformly by
all others. We believe this intuition is useful to answer our research questions.
Thus, we define normalized outward social specialization and inward social
specialization measures for both replies (ρ) and calls (κ):

OSSu,ρ =
ρu − ρu,min

ρu,max − ρu,min
ISSv,ρ =

ρv − ρv,min
ρv,max − ρv,min

where OSSu,κ and ISSv,κ are defined analogously.

4.4 Attributing Commits That Need Changing

To identify commits that had to be changed in order to close an issue (i.e.,
likely buggy commits), we use the standard SZZ algorithm [55], as expanded
in [37], with a few changes to accommodate GitHub nuances. GitHub has
a built-in issue tracking system; developers close open issues by using a set
of keywords11 in either the body of their pull request or commit message.
E.g., if a developer creates a fix which addresses issue #123, they can submit
a pull request containing the phrase “closes #123”; when the corresponding

9 This measure is originally called d by Bluthgen et al., but we will use δ here to reserve
d to represent developers.
10 We do not use MAF , we use an analogous form for our social networks.
11 https://help.github.com/articles/closing-issues-using-keywords/

https://help.github.com/articles/closing-issues-using-keywords/


Whom Are You Going to Call? 13

fixing patch is merged into the repository, issue #123 is closed automatically.
To identify likely bug-fixing commits, we search for associated issue-closing
keywords in all pull requests and commits. We then “git blame” the respective
fixing lines to identify the last commit(s) that changed the fixing lines, i.e, the
likely buggy lines. We assume the latest change to the fixing lines were those
that induced the issue, and refer to those changes as likely buggy, or buggy
for short.

We note that an issue is a rather broad definition of a bug, as an issue
can be brought up to, e.g., change the color of text in a system’s GUI; this
may not be considered a bug by some definitions. However, as GitHub has the
aforementioned automatic closing system, we believe that our identification
of fixing commits (and therefore buggy commits) does not contain many false
positives. Prior work has relied on commit message keyword search, which may
introduce false positives due to project-level differences in commit message
standards, i.e., what a commit message is expected to convey. These standards
can vary widely [7].

4.5 Variables of Interest

We are interested in measuring and predicting @-mentions as a function of
readily observable developer attributes, namely visibility, expertise, productiv-
ity, and responsiveness. We operationalize these attributes as follows:

We define visibility as the ability for developers to note a person’s exis-
tence; if developer A is not aware of the existence of developer B, it is unlikely
that A would @-mention B. This is akin knowledge-based trust. Here, we use
our social specialization measures OSSρ, OSSκ, and ISSκ, along with to-

tal social outdegree (total number of @-mentions for a developer in a given
project) as measures of visibility. We believe these measures are reasonable as
they identify one’s existence within the social network.

We define expertise as a developer’s ability to complete project tasks in
accordance with team expectations, related to characteristic-based trust. To
represent this, we use number of issue-inducing commits made by a developer,
focus measure DAF , and a factor identifying whether or not the given devel-
oper is the top committer or project owner. A higher number of issues can
indicate a lack of aptitude for programming according to the project’s goals12.
It has been shown that a higher DAF(i.e., higher module specialization) is as-
sociated with fewer bugs in a developer’s code [48]. Thus, DAF can represent
developers’ expertise in code modules. The top committer or project owner
factor indicates a certain level of prestige and expertise; one would expect the
top contributor or project owner would likely be the most expert in matters
concerning the project. Number of fixing commits was also calculated, but was
not used due to collinearity with that of bug commits.

12 We use issues fixed before closing as proxy for bugs; a higher value need not imply lack
of aptitude, but it indicates a change in expected coding behavior and expertise.
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We measure productivity as the raw commit (authoring) count. Mea-
sures of productivity abound– most have been shown (of those we computed,
e.g., lines of code added or deleted) to highly correlate with commit count,
especially in models where confounds are recognized. We choose commit count
as it is the simplest.

We describe responsiveness as a measure to answer the question: when
you are called, do you show up? One would expect that those who are re-
sponsive, and thus display their reliability, will be called upon again. This is
precisely defined as the number of times a developer is called and responds to
that call; e.g., if a developer is called in 10 unique issues and responds in 8 of
those issues, their responsiveness value is 8.

4.5.1 Extra-Project Controls

As stated, our interest is to identify readily observable attributes of potential
@-mentionees (e.g., within-project social activity and commit activity), and
functions thereof. This is in contrast to things that may be hard to observe,
such as activity outside the project at hand (e.g., outside-project social activ-
ity, exact number of commits to other projects, etc.). However, such a control
for outside experience is likely necessary as, e.g., a developer that is expe-
rienced outside the project may already be known due to outside channels,
and thus have an inflated likelihood of being @-mentioned to begin with. We
consider an outside-project attribute, developer’s GitHub age (in days), in or-
der to control for experience outside the project which may lead to increased
@-mentions when project contributions are relatively low. As GitHub age is
readily observable through the profile interface on GitHub (e.g., by viewing the
contribution heatmap), we believe this to be a reasonably observable control.
Another outside-project control we considered was number of public reposito-
ries contributed to by a developer, as this is readily observable; however, this
was highly correlated with age, and was thus dropped from the model.

4.6 Modeling Future @-Mentions

To answer our questions, we use count regression in a predictive model. This
allows us to inspect the relationship between our response (dependent variable)
and our explanatory variables (predictors or covariates, e.g., responsiveness)
under the effects of various controls (e.g., project size).

There are many forms of count regression; most popular are so-called Pois-
son, quasi-poisson, and negative binomial regression, all of which model a
count response. In our work, we are interested in @-mentions as measured
by number of incoming @-mention calls per person - a count. In addition, as
our data contain many zeros, we need a method that can accommodate; the
methods listed above all have moderate to severe problems with modeling ze-
ros. Zero inflated negative binomial regression and hurdle regression are two
methods specifically designed to address this challenge by explicitly modeling
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the existence of excess zeros [14]. It is common to fit both types of models,
along with a negative binomial regression, and compare model fits to decide
which structure is most appropriate. Standard analysis of model fit for these
methods uses both Akaike’s Information Criterion (AIC) and Vuong’s test of
non-nested model fit to determine which model works best [61].

We employ log transformations to stabilize coefficient estimation and im-
prove model fit, when appropriate [18]. We remove non-control variables that
introduce multicollinearity measured by variance inflation factor (VIF) > 4
(e.g., we do not use ISSρ due to high VIF), as multicollinearity reduces in-
ferential ability; this is below the generally recommended maximum of 5 to
10 [18]. Keeping control variables with high VIF is acceptable, as collinearity
affects standard error estimates; as control variables are not interpreted, we
do not much care if their standard error estimates are off [2]. We model on
the person-project level, i.e., each observation is a person within a project. We
performed multiple hypothesis testing (p-value) correction by the Benjamini
and Hochberg method [5]. A squared age term is present in the zero model to
account for a quadratic shape in the residuals, along with its lower order term
as is standard in regression [23].

As noted in Section 3, we explicitly model future @-mentions; our response
variable is the value 6 months after our “observed” (i.e., covariate) data. As
such, we build a predictive model, not a fully regressive model - i.e., one that
is built on the entirety of available data. We note the difference is minor, but
worth reiterating.

5 Results and Discussion

5.1 Case Study: Project-Level Reasons for Call @-Mentions

We are interested in empirically measuring the reasons behind the @-mention.
To make sure our theoretical underpinnings are reasonable, we performed a
random manual inspection of 100 call @-mentions from our data set, to qual-
itatively identify the primary reason behind the call. A sample of size 100
grants far above the recommended statistical power of 0.8 at an error rate of
5% for 5 pairwise comparisons (for our 5 qualitative groups, discussed below)
based on 1-way ANOVA with 2-sided quality; thus, our results are considered
statistically sound [16]. Though call @-mention use might be more common in
some projects than others, our sample of 100 call @-mentions were selected at
random across all projects, and thus our results should not be biased.

This study was performed initially by one author, with qualitative codes
defined by prior work [58] (discussed in Section 2.5) and in collaboration with
another researcher (not credited as an author of this work). We first identified
a set of general codes from the mentioned prior work, and consolidated these
into the final set of 5 presented. The goal of this case study was to validate
theoretical reasoning discussed in Section 2, specifically to identify whether or
not our definition of a call @-mention is viable, as well as guiding decisions
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regarding variables for our models. Thus, although our observed counts within
each category are statistically robust as defined by recommended procedure,
this study was performed primarily as a motivational study, rather than a
strictly statistically robust undertaking.

The counts of each category found in our manual inspection is shown in
Table 1. In the case of R, we argue that reliance and/or trust in the mentionee
is clear: the mentioner explicitly requests that the mentionee performs some
defined task; if the mentionee was deemed unreliable, the mentioner would be
unlikely to trust them with an explicit task.

For R-S, the mentionee is not explicitly called upon to perform some task.
However, the mentioner seems to want the mentionee to respond (or perform
a task), but does not wish to explicitly tell the mentionee to act, likely out
of politeness. Though the call to action is not explicit, we argue this still
represents mentionee reliability; like R, the mentioner wants the mentionee to
perform an action, but does not explicitly state as much.

In the case of I, the call is meant to tag the @-mentionee in case they
want to participate; not necessarily in order to respond to the thread, or
perform some action. However, the mentioner believes that the mentionee
may be interested in the issue at hand. This is similar to R-S, albeit slightly
weaker, as the mentioner may not have a particular task in mind for the
mentionee. However, this still indicates that participation from the mentionee
may be appreciated. E.g., in Table 1, in the I example, @DavidGoll @karelz
are cc-ed in a message to @mconnew, to inform them of a new development
in a discussion they were previously involved.

In the case of CA, the mentioner is calling the mentionee in order to
give credit, e.g., when the mentionee produced an important patch that is
relevant to the discussed issue. Though this is not a clear reliance on the
mentionee in description, in practice we find it is often used in a similar way
to I; participation from the mentionee may be appreciated, but not necessary.

Across all 100 manually inspected cases, we found only 3 cases in which
the call @-mention does not fall into the aforementioned categories (3%); one
appears to be a misuse of the @-mention; the other two are due to users
changing their GitHub display name after the @-mention is seen, thus throwing
off our detection of the @-mention as a call rather than a reply. Thus, we
argue that the call @-mention is consistently representative of reliance on the
mentionee.

5.2 Future @-Mention Models

Fig. 2 shows a selection of variables from our categories of interest and their
paired relationship with future @-mentions. For all variables, we see a strong
positive relationship with @-mentions; the largest correlation sits with devel-
oper responsiveness (78.90%).
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Table 1: Call @-mention categories, samples, and case study.

Category Example Count

R (Request)
Project: hashicorp/terraform; Issue: 7886
“@phinze - can we please have someone take a look
at this PR now that tests and docs are complete?”

39

R-S (Request-Suggest)
Project: dotnet/roslyn; Issue: 18363
“”... I don’t know if the test flavor recognizes this
capability. @codito @sbaid would know.”

17

I (Inform)

Project: dotnet/corefx; Issue: 8673
“/cc @DavidGoll @karelz
@mconnew My current understanding (based on
WinHTTP’s response) is ...”

33

CA (Credit Attribution)
Project: avajs/ava; Issue: 1400
“... There is already a PR for this though, thanks
to @tdeschryver ...”

8

Misuse or Misclassification

Project: celery/celery; Issue: 817
“We are also using them in production @veezio for
quite some time, works fine.”
Author’s note: @veezio is a company GitHub ac-
count.

3

Though paired scatter plots provide initial insight to determinants of po-
tential power, we must model them in the presence of other variables, along
with controls, to properly answer our questions.

RQ 1: Can we describe/predict future @-mentions in terms of de-
veloper visibility, expertise, productivity, and responsiveness?

Table 2 shows our model of future @-mentions, with determinants of in-
terest grouped and separated from one another. Our analysis points to a zero
hurdle model as providing the best fit, which separately models the process of
attaining one’s first call (“zero” model, logistic regression), and the process of
attaining beyond one call (“count” model, negative binomial regression). We
tested for the usage of a negative binomial regression as opposed to a Poisson
regression in the count model by fitting an additional quasi-poisson model to
test for issues of under- and over-dispersion, which can be an issue for Poisson
models and may affect model quality. Quasi-poisson models explicitly fit a dis-
persion parameter which can be used to evaluate under- and over-dispersion;
negative binomial models can be used for over-dispersed data [51]. Results
from these tests suggested that over-dispersion was an issue for our data; in
addition, a negative binomial count model had a better fit than both Poisson
and quasi-poisson models. Thus, we chose to model non-zeroes using a neg-
ative binomial model in our hurdle regressions. Fig. 3 depicts predicted and
observed values along with a y = x and trend line.

The mean average and mean squared error are 0.910 and 15.769, respec-
tively. To aid in interpretation of how good this predictive model is, we note
that the range for the observed future @-mentions is from 0 to 136, with an
average of 2.637; thus our mean average error with respect to the spread is
0.910/173 = 0.670% and with respect to the average is 0.910/2.380 = 38.24%.
In other words, looking at the mean average error, our model differs from
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Fig. 2: Future @-mentions vs. selected attributes of visibility, expertise, pro-
ductivity, and responsiveness. Axes log scaled.

the observed value by an average of 0.910 call @-mentions. Thus, we say this
indicates a good model fit.
Visbility We see that OSSρ and social outdegree are positive for both the
count and zero components of our model. This suggests that a higher social
focus (in replying to others) and larger overall social outdegree associates
with being @-mentioned in the future - be it in the transition from zero to
greater than zero @-mentions, or in increasing @-mentions. However, we see
a negative coefficient for ISSκ, suggesting that when others focus their calls
on the observed individual, the observed’s @-mention count decreases13. This
negative coefficient is not unexpected; ISSκ is derived from the Kullback-
Leibler divergence, and when there are many cells (i.e., others that can be
called), it is expected that a higher focus is correlated with a lower raw value.

13 ISSκ is not used for the zero component; it is undefined when call mentions are 0.
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Table 2: Future @-mention model; p-values corrected by BH method. User
subscripts omitted; they refer to the developer under observation within the
model

Dependent variable:

Future @-mentions (6 months later)

Count (Std. Err.) Zero (Std. Err.)

Visibility

OSSρ 0.103∗ (0.045) 0.351∗∗∗ (0.100)
OSSκ −0.046 (0.040) 0.508∗∗∗ (0.099)
ISSκ −0.283∗∗∗ (0.047)
Log Social Outdegree 0.058∗∗∗ (0.008) 0.433∗∗∗ (0.022)

Expertise

Log Number of Buggy Commits −0.065∗∗∗ (0.010) 0.187∗∗∗ (0.043)
DAF −0.040 (0.042) −0.134 (0.101)
Top Committer or Project Owner 0.055 (0.044) 0.691 (0.534)

Productivity

Log Commits 0.086∗∗∗ (0.008) 0.453∗∗∗ (0.025)

Responsiveness

Log User Responsiveness −0.003 (0.012)

Controls

Committer Only 0.141∗∗∗ (0.039) −1.584∗∗∗ (0.060)
Log Total Posts in Project 0.021∗ (0.010) 0.151∗∗∗ (0.021)
Log Observed @-Mention Value 0.980∗∗∗ (0.011)
User GitHub Age (Days) −0.137∗∗∗ (0.020) −1.470∗∗∗ (0.430)
User GitHub Age (Days) Squared 0.116∗∗∗ (0.031)
Intercept 0.637∗∗∗ (0.180) 1.684 (1.511)

Observations 17,171
Mean Absolute Error 0.910
Mean Squared Error 15.769

†p<0.1; ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

E.g., consider the case where 10 individuals can call on developer A. If each
calls A once, the raw value for calls is 10 and ISSκ is low; if only one developer
calls A, the raw value is 1 but ISSκ is high. In support of this intuition, Posnett
et al. [48] found that a higher value of DAF associates with a lower raw cell
count.

In sum, having a larger social presence (OSSρ, social outdegree) may as-
sociate with one’s future @-mention count. These values are much easier to
increase for an individual than ISSκ, as ISSκ is a function of indegree, and
thus less in the individual’s control.

Expertise The number of likely buggy commits a developer makes has a
negative coefficient for the count component, suggesting that a larger number
of likely buggy commits associates with a decrease in @-mentions. This is as
expected: a higher expertise should lead to more future @-mentions. However,
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Fig. 3: Predicted vs. observed values.

we see a positive coefficient for the zero component. This is puzzling at first,
but may be explained thusly: it is known that contributions are extremely
important in order to gain technical trust in OSS [26], supported also by the
large coefficient for commits in the zero component (0.453). As the number of
likely buggy commits is correlated with the number of overall commits by a
developer, this positive coefficient indicates that contributing at all, regardless
if one’s contribution is buggy, is important in getting the first call mention,
and thus the first @-mention.

Productivity In both the zero and count components, we see a positive
coefficient for commits, indicating that increased productivity is associated
with higher @-mentions. The zero model coefficient is very high. This is in
support of productivity being important in receiving the first @-mention.

Responsiveness Interestingly and contrary to our hypothesis, for the count
component, we see an insignificant coefficient. Responsiveness is not considered
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in the zero component as one must be called in order to reply, which means
responsiveness is undefined for those with an @-mention count of 0.

Research Answer 1: We see a positive effect of visibility measured by
OSSρ, and a negative effect for ISSκ. More likely buggy commits (a
measure of negative expertise) is associated with lower @-mentions when
one has already been @-mentioned, and higher @-mentions if one has not
yet been @-mentioned, possibly explained by the idea that any productivity
associates with a first @-mention. We see positive effects for productivity,
and no significant effect of responsiveness.

5.3 Case Study: Attributes of Interest and Model Fit

To further examine RQ 1 and provide concrete reasoning behind our model’s
fit, we performed case studies. Specifically, we looked at those with high ob-
served future @mentions but low model predictions, and those who transition
from zero to nonzero @-mentions.

5.3.1 Sub-Case Study: High Observed @-Mentions, Low Predicted @-Mentions

For this study, we manually examined those with less than 50 and greater than
15 observed future @-mentions, nonzero observed past @-mentions, and a pre-
dicted @-mention count of less than or equal to 1; i.e., those along the bottom
of the x-axis of Fig. 3. In this region, all individuals have never explicitly
replied to another developer (i.e., OSSρ and social outdegree are both 0), a
low number of commits (1 to 9); as these coefficients are positive in our model,
these individuals should be pushed to higher counts. However, all developers in
this region also have relatively high ISSκ (0.1 to 1.0), and have experience in
other projects (indicated by a large developer age). As both ISSκ and devel-
oper age have a relatively large negative influence in our model, this explains
why our predicted future @-mentions are low from a statistical standpoint.

To dig deeper, we consider the case of a particular developer in this region:
developer arthurevans, for project google/WebFundamentals. In issue #4928
of the project, a discussion about PRPL patterns14, the poster says: “I’ll
defer to the grand master of all things PRPL, @arthurevans for what the final
IA for this section might look like”. Although arthurevans has low observed
activity in the project itself (e.g., low social outdegree and low commit count),
this indicates that the poster greatly values arthurevans’s input. The story is
similar for the others in this region 15; the issue poster values the opinion of
the called-in person, indicating a level of outside-project expertise.

In summary, it appears this region consists of those who are actually expert,
but this expertise is not reflected by their in-project contributions. Although

14 https://developers.google.com/web/fundamentals/performance/prpl-pattern/
15 We could not perform this in-depth study for discussions not in English.

https://developers.google.com/web/fundamentals/performance/prpl-pattern/
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we attempt to capture outside expertise through a developer’s overall GitHub
age, we were unable to include other metrics of outside expertise (e.g., number
of public repositories contributed to) due to high multicollinearity. Orthogonal
metrics of outside expertise may exist that can better fit these individuals.

5.3.2 Sub-Case Study: Transitioning From Zero @-Mentions

For this study, we took a random sample of 10 individuals (out of 235) who
had zero observed @-mentions, but transitioned to nonzero @-mentions in the
next 6 months, i.e., our future period. In this region, we observe a combination
of factors: project age and newcomers who wish to participate more. Some
projects are relatively new or newly popular, which means that although they
are rapidly gaining popularity on GitHub, their issue production rate hasn’t
yet caught up. Though all individuals have contributed to the project, there
has not been a chance for @-mentions to be observed; those transitioning from
zero @-mentions to nonzero @-mentions would likely have nonzero @-mentions
had the observation time split been later in the project.

Perhaps more interesting, we see some new individuals that have recently
contributed commits and seem genuinely interested in participating more. For
example, in pull request #2587 of the project prometheus/prometheus, we see
the first call to developer mattbostock, causing a transition from zero to nonzero
@-mentions. Prior to this, we see that mattbostock had been contributing to
issue discussions (e.g. issues #1983 and #10), bringing up problems and pro-
viding potential solutions. Thus, due to signaling interest and participating in
discussions (visibility), providing commits (productivity), and having no issues
against these commits (expertise), we see them being eventually recognized in
an @-mention.
RQ 2: Can models trained entirely on one project be reliably used
to predict @-mentions on another project?

To answer this question, we require project-specific models of @-mentions.
Due to the sparseness of data, adding a factor to the existing model in Ta-
ble 2 causes estimation to diverge. Thus, to avoid divergence, we fit simplified
models with selected attributes of visibility (OSSρ, ISSκ, social outdegree),
expertise (likely buggy commits), productivity (commits), responsiveness, and
developer’s outside project experience (GitHub age). A subset is required due
to the smaller number of observations per project; too many variables for too
little data can cause issues as, e.g., small multicollinearity can cause big issues
for small data. Thus, we select only a few representative variables from each
of our groups of interest. For consistency, we explicitly fit separate models for
the transition from zero to nonzero (zero component) and for nonzero count
(count component), as is done implicitly by the hurdle model.

Fig. 4 contains symmetric heatmaps of predictability for our project-specific
models (count and zero, respectively). To measure predictability of the count
component, we use the average of mean absolute error (MAE) between each
pair of models. For projects i and j, with data di and dj , and models yi and
yj , we compute predicted values ŷi = yi(dj) and ŷj = yj(di); i.e., we predict
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(a) Count model.

(b) Zero model.

Fig. 4: Cross-project predictive power heatmap for each project-specific model,
count (a) and zero (b) components.

using one model’s fit and the other model’s data, thus providing a measure
of cross-project model fit. We then compute the average MAE between the
two fits i.e.,

ŷi+ŷj
2 , and plot this value in each heatmap cell. For the zero

component, we analogously compute fit by calculating the average area under
the receiver operating characteristic curve (AUC) between two projects i.e.,
AUC(ŷi)+AUC(ŷj)

2 . For MAE, a lower value is better; for AUC, a higher value.
We then plot a dendrogram, showing clusters of projects based on predictive
ability.

For both the count and zero components, we generally see good fit across
projects (lower average MAE, higher average AUC), with some outliers. For
the count case, we see that uxsolutions/bootstrap-datepicker is an anomaly in
having poor fit for many projects, being grouped in its own cluster. Otherwise,
there are no immediately clear clustering relationships between projects, other
than that the mean MAE is generally below 10, as noted in the density plot.

For the zero case, we also see one clear outlier: akka/akka. In general, cross-
project fits for this project are relatively poor compared to the majority. The
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reason for this may be due to the difference in importance for our determinants
of interest as compared to other projects. Fig. 5 shows our fitted coefficients
for each project model. For the zero component, though akka/akka does not lie
on its own according to hierarchical clustering, we see that its coefficients are
very different from other projects, with a negative coefficient for commits and
almost zero coefficients for all other variables (except social outdegree). This
explains the poor cross-project fit; in this project, a higher number of commits
associates with a lower predicted @-mention count, while in the majority of
other projects this coefficient is positive (or nearly zero).

In summary, we do see a general trend of good fit for both the count
component and, to a lesser extent, the zero component.

Research Answer 2: The count component of each project-specific model
has overall good fit when predicting purely cross-project. A similar trend
exists for the zero component, though to a lesser extent on average.

RQ 3: Is there evidence of project-specific @-mention culture? Or
are the determinants of @-mentions a GitHub-wide phenomenon?

Fig. 5 contains heatmaps of coefficients for the count and zero components
of our project-specific models. When looking at each column, we see some
coefficients that are almost uniformly the same, e.g., responsiveness for both
components, commits for the count component, and likely buggy commits for
the zero component. However, we do see differences, e.g., OSSρ in both model
components is negative for some and positive for other rows.

The fact that there are differences per column (i.e., per coefficient) for
most coefficients lends credence to the idea that there are project-specific @-
mention culture differences on a per attribute basis. However, there are things
that don’t change across projects, e.g., the importance of commits in gain-
ing more @-mentions. In addition, the generally high cross-project predictive
power shown in Fig. 4 suggests that project-specific culture differences may not
matter too much. To identify some concrete reasoning behind these particular
differences in variable importance, we turn to another case study.

5.4 Case Study: Project-Level Differences

Reflecting on Fig. 5, here we ask: why are some coefficients positive for a
number of projects, and negative for others?

As OSSρ seems to exhibit this behavior in both our count and zero models,
and significantly so for our global model, we choose it for our study. For the
zero model, we see a negative coefficient for projects uxsolutions/bootstrap-
datepicker, pouchdb/pouchdb, and codemirror/CodeMirror ; indicating higher
specialization in one’s replies associates with lower future @-mentions in the
projects.

One explanation for this phenomenon could be due to a larger inner circle as
compared to other projects; i.e., to gain @-mentions one must become visible to
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(a) Count model.

(b) Zero model.

Fig. 5: Heatmap of coefficients for project-specific models, (a) count and (b)
zero components.

more people. For both uxsolutions/bootstrap-datepicker and pouchdb/pouchdb,
this seems to be the case. When looking at the distribution of commits across
contributors, in both projects the original top committer has largely reduced
their commit rate, while in the mean time the second largest committer has
picked up the pace. In addition, the distribution of commits seems to be com-
paratively more uniform across contributors, indicating a larger inner circle.
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For codemirror/CodeMirror, the distribution of commits is highly concentrated
in the top committer; however, when viewing issues, we see that multiple oth-
ers contribute to review and discussion. This likewise indicates a larger inner
circle that one must be visible to. For the count model, the story seems to be
the same for projects with a negative coefficient; there is either a more uni-
form distribution of commits across the top contributors, or a larger number of
individuals participating in issue discussions, indicating a larger inner circle.

For projects with positive coefficients, we see a different behavior. In pull
requests, it appears the top project members are more open to calling on
others to provide input. E.g., for project spotify/luigi pull request #2186,
a top contributor asks the original poster to run git blame on the modified
code to see who originally posted it, admitting a lack of expertise about the
associated module; we see similar behavior for pull request #2185. For project
addyosmani/backbone-fundamentals issue #517, we see the project owner calls
on another contributor for their input, stating “[I] would love to suggest your
project to devs ...”. Recall that a positive coefficient for OSSρ indicates a
specialization in reply behavior, i.e., more focus in one’s social behavior. As
the top contributors for these projects seem to be the ones calling on others, it
appears one may specialize their social behavior towards the top contributors
to get noticed; hence, more social specialization may associate with higher
future @-mentions.

Research Answer 3: We see slight indications of project-specific @-
mention culture. The high cross-project performance suggests that these
differences may not matter much for predictivity.

6 Practical Implications

Understanding which of the observable attributes of a developer are most cor-
related with their status can inform developers about how others see them,
and help them learn the community values. To that end, our models of future
@-mentions based on past observable behavior can be useful for informing
developers as to which of their external characteristics matter to others, for
them to be called for help. Such an understanding can be a first step to be-
coming a part of a community, or belonging. In practice, this means examining
the coefficients of our models, and noting the attributes (i.e., metrics) having
significant positive and significant negative coefficients in the models. Those
would be the attributes that the data says may matter most to the commu-
nity. Since we model two separate phenomena, the count and the zero models
in Table 2, there are different attributes that matter to the community for
attaining a higher count than for getting the first @-call, as discussed in the
Results and Discussion section.

But understanding community values can also lead to wanting to enhance
those values, or perhaps modify them. Periodic re-fitting and examination of
the models can reveal trajectory changes in the community values, e.g., in-
creased emphasis on participating in discussions, or decreased emphasis on
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responsiveness over time. If the resulting trajectories are showing a departure
from the community goals, then concerted, community-wide efforts, e.g. by es-
tablishing guidelines or even rules, may be needed to modify those trajectories
and bring them closer to the ideals.

As discussed in Theory and Related Work above (Section 2), the (call)
@-mention represents a deeper underlying phenomenon than just a tool for
getting attention. It is also a belief in the @-mentionee’s abilities to provide
valuable input [59], often explicitly stated as being greater than the caller’s, to
accomplish a particular task at hand. Attaining a social (or technical) status
as the developer who “gets the job done” can be desirable, as these individuals
may more easily enter the “circle of trust” within a given OSS project [26],
potentially reducing the time it takes for their commits to be incorporated
into the code base [20,13]. Having higher status also increases one’s visibility,
and with it the chances of participating (or furthering participation) in popu-
lar projects [20]. In addition, social interaction between work group members
has been found to be important for task success [53], and the elevation of
members to a “role model” status [3,4]. On GitHub, these role models (“rock-
stars”) have been found to be important influencers on the general community,
providing examples of coding best practices and facilitating novice developers
to learn [20,39]. Our models in Table 2 offer good predictivity, and indicate
which attributes of developer activities may be influential in attaining future
@-mentions. For example, our model shows that committing more is associated
with more future @-mentions, for the first mention and beyond. In addition,
having a larger outgoing social presence (social outdegree) is associated with
more future @-mentions. Thus, developers who wish to attain the above men-
tioned status roles can use these model associations as guidelines to finely
calibrate their behavior over time to exhibit in the community the character-
istics that can result in them gaining higher status.

Our finding that the models can perform cross-project prediction well
suggests that, on average, it can be expected that one’s activity pattern in
a project, if emulated in other projects, can result in the same level of @-
mentions for them. This also implies that by simply joining the other project
and continuing the same behavior as in the former project one can expect a
similar @-mention levels there. However, in each project a developer needs to
demonstrate sufficient levels of the predictors mentioned above in order to be
called upon, which presumably will take some time.

Some of our results were less obvious than others, e.g., the insignificant
effect of responsiveness. This may indicate that it is worth calling on and
waiting for the high-status people to get involved, even if they are slow.

From a security perspective, trusting new people with the project’s code
is associated with more maintenance and supervision, which is certainly a
concern. Based on our results in this paper, increased efforts could be useful
towards training new people to the specifics of the project’s code, e.g., by
creating a portal for newcomers [57]. Future work may include building online
tools to facilitate newcomer onboarding, e.g., the creation of “tag profiles”
which provide suggestions to new users regarding how to increase their @-
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mentions, an indicator that they are important to a project’s success, thus
benefiting the project as a whole; also (and perhaps more controversially) it
might be helpful to have tools to measure how often each developer’s changes
induce future fixes.

7 Threats to Validity

There were challenges involved in all aspects of the work, largely due to the
loaded reasoning behind @-mentions. Being @-mentioned is not just a result of
technical prowess; @-mentioning is also a social phenomenon. Many potential
issues were anticipated and carefully addressed. Once we settled on the idea of
using call @-mentions, we were able to connect our outcome with background
theory on the multidimensionality of @-mentions. To define @-mentions pre-
cisely, we necessarily had to narrow our definition specifically to call mentions
in issue discussions.

We acknowledge that only considering individuals with non-zero commits
is a threat. However, the density of @-mentions for those with zero commits is
highly concentrated at zero (median 0 @-mentions for those with zero commits,
mean 0.26). In addition, this helps alleviate the threat of bots as bots often
must be @-mentioned to be activated; however, most bots do not show up in
the “authors” field for a given commit (they may show up in the “committer”
field, but we do not use this field in our work). In addition, as we have data
from many projects, unless bots are the vast majority of our data points, they
should not have a palpable effect on our model fit. We also manually inspected
commits to try and filter out bots. However, we cannot be certain that all bots
are removed from our data; thus, we acknowledge bots as a threat.

Regarding our identification of “reply” and “call” @-mentions, it is possible
that we misidentify a “reply” as a “call” if an individual uses multiple GitHub
accounts to post within a project. E.g., if someone first posts with username
A, then later posts as username B, we would identify B as a “call” rather than
a “reply”. Due to the confusion that would likely ensue if this was common,
we do not see this as a major threat.

We acknowledge that our identification of likely buggy commits may have
issues. The method we use is supported by multiple prior works [55,37], and
seen as a “standard method”. However, this does not have the robustness of a
method that, e.g., uses an explicit bug tracker to identify buggy commits, and
has issues as described by prior work [19,52]. Due to the structure of GitHub,
there is no guaranteed method to identify buggy commits that will work across
all projects. Thus, we acknowledge this as a threat.

We note that our operationalization of productivity through commits has
its issues. This includes the issue of varying commit styles amongst developers
and between projects; some projects may want commits to be as small as
possible, while others may not care for or enforce such a rule. We also tested
for the inclusion of MAF and DAF in their original forms from prior work,
which can be seen as productivity measures, as well as raw lines of code.
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However, these measures were highly correlated with commits. Thus, we chose
to represent productivity with a more easily understood measure - commits -
for the sake of model parsimony [60].

Though we attempt to model developer expertise through their GitHub age
(in days), we acknowledge a threat with this operationalization. Though age is
often an important indicator of expertise, expertise can be measured outside
of age, e.g., a contributor may have a specific skill set that is sought after in
a project, and thus may be called upon regardless of their age. We do have
a semi-overlapping measurement of code-based skill through commits, though
this is not guaranteed to be adequate in controlling for this phenomenon.
And, as noted above, MAF and DAF - which can be interpreted as more
complex measures of expertise - were highly correlated with commits. It may
be possible to measure skill-specific expertise by, e.g., looking at a developer’s
commit history and seeing the subject domain of their contributions prior to
being called. However, this measurement would be difficult to obtain as it
would require a labeling of subject domains, which GitHub does not reliably
provide. Thus, though we attempt to control for developer expertise, we note
this as a threat to validity.

We also acknowledge that coefficient estimates are somewhat small, and
we do not report effect sizes (beyond interpreting coefficient estimates as “ef-
fect sizes” themselves). This is because standard effect size calculations, e.g.,
Cohen’s d [17], are not well-behaved for non-Gaussian distributions - as is the
case in our models.

Our case studies would benefit from larger amount of data. The case study
sizes were due to the regions of interest; our regions were small, and thus our
case studies were relatively small.

Our work is supported by prior qualitative research into @-mention us-
age. Still, we acknowledge that our study would likely benefit from further
qualitative studies, e.g., a survey of developers on their use of the @-mention.

8 Conclusion

We performed a quantitative study of @-mentions in GitHub, as captured in
calls to people in discussions. We supplemented those with case studies on
samples of discussions, to help triangulate our findings. Our models have good
fits to the data, suggesting that our formulation of @-mentions is explained
well by the data.

The idea that projects in an ecosystem have similar models of what it
means to be worthy of an @-mention is appealing. We find that the good
cross-project predictive power cannot be simply distilled down to productivity
in our models, thus adding evidence toward the multidimensional nature of
@-mentions. It is also very reasonable that there would be cliques of projects
in which the sense of who to @-mention is even more uniform than across the
whole ecosystem, and our findings underscore that. Obvious open questions
here are: how do notions of @-mentions get in sync? And, to borrow from
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ecology, does the robustness of the @-mention models across GitHub convey
any fitness benefit in the ecosystem? We can see a plausible mechanism that
would offer an answer to the first: projects share people and people cross-
pollinate the @-mentioning behavior across projects in which they participate.
We leave the validation of this, and other models, to future work. The @-
mention model robustness, likewise, implies some preference for success, be it
by design or an emerging one, across the ecosystem. This can be a function
of people’s mobility in the ecosystem and their preference for and vigilance to
participate in popular projects; we leave the answers for future work.

References

1. Ackerman, A.F., Fowler, P.J., Ebenau, R.G.: Software inspections and the industrial
production of software. In: Proc. of a symposium on Software validation: inspection-
testing-verification-alternatives, pp. 13–40. Elsevier North-Holland, Inc. (1984)

2. Allison, P.: When can you safely ignore multicollinearity? https://

statisticalhorizons.com/multicollinearity (2012)
3. Bandura, A.: Aggression: A social learning analysis. Prentice-Hall (1973)
4. Bandura, A., Walters, R.H.: Social learning theory (1977)
5. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and pow-

erful approach to multiple testing. Journal of the royal statistical society. Series B
(Methodological) pp. 289–300 (1995)

6. Bird, C., Gourley, A., Devanbu, P., Swaminathan, A., Hsu, G.: Open borders? immi-
gration in open source projects. In: The Fourth International Workshop on Mining
Software Repositories (2007)

7. Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., German, D.M., Devanbu, P.: The
promises and perils of mining git. In: Mining Software Repositories, 2009. MSR’09. 6th
IEEE International Working Conference on, pp. 1–10. IEEE (2009)
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