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1 Introduction

The security of cryptosystems depends on keeping secret keys
secret, but this is quite hard to achieve in the real world.
Attackers have a wide range of methods for learning a secret
key, including brute-force search, cryptanalysis, system
penetration, side channel attacks and social engineering.
In recent years, cryptographic researchers have considered
how to design cryptosystems that anticipate the likelihood of
key exposure. The idea is to try to limit the damage that can
result even when a determined attacker learns your secrets
from time to time.

This paper presents a survey of one important design
strategy of this type: key evolving cryptosystems in the
public key setting. The essential feature of this design
strategy is that the secret key changes over time,
while the corresponding public key remains unchanged. Note
that this is somewhat similar to the behaviour of a proactive
threshold cryptosystem (Herzberg et al., 1997; Ostrovsky
and Yung, 1991), although without splitting the functionality
of the secret key among multiple parties (Desmedt and
Frankel, 1989).

The emphasis in this survey is on two approaches to key
evolving cryptosystems in the public key setting: ‘forward
secure’ and ‘intrusion resilient’ cryptosystems. We begin
with a discussion of forward secure cryptosystems, treating
both forward secure digital signature and forward secure
public key encryption schemes. Then, we describe intrusion
resilient cryptosystems, focusing on intrusion resilient
public key encryption, and then touching briefly on
constructions for intrusion resilient digital signatures. The
final section gives some conclusions and further pointers to
the literature.

2 Forward security in the public key setting

In this section, we survey forward secure cryptosystems
in the public key setting. This approach emerged from
suggestions of Back (1996) and Anderson (1997), with
the first formalisation by Bellare and Miner (1999).
We begin with a discussion of forward secure digital signature
schemes, followed by a treatment of forward secure public
key encryption.

2.1 Forward secure signatures

A forward secure signature scheme is a public key signature
scheme where the signing key changes over time. There is an
initial signing key for the first time period. At the end of each
time period, an efficient ‘key update’ function computes the
new signing key for the next time period, and erases the old
signing key. The verification function takes four inputs: the
message, the signature, the public key and the time period.
The signing function takes four inputs: the message, the
public key, the time period and the signing key for the time
period (see Figure 1).
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The security guarantee is that exposure of the signing key for
any time period does not enable forged signatures for earlier
time periods. This is the best that is possible, because from
any signing key, an attacker can compute the signing keys for
all future time periods.

There are many constructions for forward secure
signatures in the cryptographic literature, including Bellare
and Miner (1999), Abdalla and Reyzin (2000), Itkis and
Reyzin (2001), Malkin et al. (2002) and Kozlov and Reyzin
(2002). See Cronin et al. (2003) for some interesting
efficiency comparisons of various forward secure signature
schemes. The relation of forward secure signatures to other
kinds of key evolving signature primitives is explored by
Malkin et al. (2004).

Here, we sketch two basic constructions of Malkin et al.
(2002). Let T denote the maximum allowable number of time
periods in a forward secure signature scheme. Note that any
ordinary public key signature scheme can be viewed as a
forward secure signature with T = 1 (by erasing the signing
key at the end of the single time period).

2.1.1 Sum composition

Let �0 and �1 be forward secure signature schemes with
maximum allowable number of time periods T0 and T1

respectively. The sum composition (denoted �0 ⊕ �1) has
maximum allowable number of time periods T = T0 + T1.
Intuitively, �0 is used to sign messages for the first T0 time
periods, and �1 is used to sign messages for the last T1 time
periods.

We begin with a simplified variant. The public key consists
of the public keys of both �0 and �1. The secret key starts
with the secret keys for the first time period of both �0 and
�1. At the end of time period i, where i < T0, the �0 signing
key is updated to time period i+ 1. At the end of time period
T0, the �0 signing key is completely erased. At the end of
time period T0 + i, where i < T1, the �1 signing key is
updated to time period i + 1. To verify a signature from
time period i, where i ≤ T0, use the public key for �0 with
time period i. To verify a signature from time period T0 + i,
where i ≤ T1, use the public key for �1 with time period i.

The actual sum composition includes some efficiency
improvements. Firstly, the public key actually consists of just
the hash of the public keys of �0 and �1. Then each signature
during any time period includes the public keys for both
�0 and �1, and these are checked against the public hash
as part of the verification procedure.

The other efficiency improvement reduces the overall size
of the secret key. Let r1 be the random seed that is used by
the key generation algorithm of �1 to generate the public key
and signing key for �1. Then the secret key for �0⊕�1 starts
with the following four values: the secret key of �0 for its
first time period, the random seed r1 and the public keys for
both �0 and �1. At the end of time period T0, the secret key
of �1 for its first time period is recomputed from the seed r1

(and the secret key for �0 is deleted).
The sum composition can be iterated. For example,

suppose that �0 and �1 are ordinary signature schemes.
Then T0 = T1 = 1, and the ‘level one’ composed scheme
has maximum allowable number of time periods T = 2. If
both �0 and �1 are level one sum compositions, then their

‘level two’sum composition has maximum allowable number
of time periods T = 4.

2.1.2 Product composition

Let �0 and �1 be forward secure signature schemes with
maximum allowable number of time periods T0 and T1,
respectively. The product composition (denoted �0⊗�1) has
maximum allowable number of time periods T = T0 × T1.
Intuitively, there is a unique instance of �1 for signing
messages ‘within’ each time period of T0. Each time period
of �0 is now called an ‘epoch’ because it actually lasts for T1

time periods. Let (i, j) denote the j th time period of the ith
epoch.

The public key of �0 ⊗ �1 is the public key of �0.
A signature of a message in time period (i, j) contains the
following values: the message signed with the j th secret key
of the ith instance of �1, and the public key of the ith instance
of �1 signed with the ith secret key of �0. The secret key
in time period (i, j) contains the ith secret key of �0, the
public key for the ith instance of �1, the j th secret key
for the ith instance of �1 and a random seed for generating
future public keys and private keys of �1. The verification
and update algorithms are omitted.

2.1.3 MMM construction

A hybrid variant of the sum and product compositions yields
a particularly efficient forward secure signature scheme with
essentially no restriction on the maximum allowable number
of time periods. See Malkin et al. (2002) for details.

2.2 Forward secure encryption

Forward Secure Encryption (FSE) is a public key encryption
scheme where the secret key changes over time. There is an
initial secret key for the first time period. At the end of each
time period, an efficient ‘key update’ function computes the
new secret key for the next time period, and erases the old
secret key. The encryption function takes three inputs: the
message, the public key and the time period. The decryption
function takes four inputs: the ciphertext, the public key, the
time period and the secret key for the current time period
(Figure 2).

Figure 2 Forward secure encryption
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The security guarantee is that exposure of the secret key for
any time period does not compromise any ciphertexts that
were encrypted for earlier time periods. This is the best
that is possible. Once the attacker knows one secret key,
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he/she could perform the same efficient key update function
to compute the secret keys for all future time periods.

In this section, we describe a construction for forward
secure encryption due to Canetti et al. (2003). We begin
by giving a brief discussion of bilinear pairings for
cryptography followed by a description of a building block
called ‘binary tree encryption’.

2.2.1 Bilinear pairings for cryptography

Let G1 and G2 be two groups of order q for some large
prime q. It is standard to view G1 as an additive group
and G2 as a multiplicative group. Let ê be a function (or
‘map’) from G1 × G1 to G2. We say that ê is ‘bilinear’ if
ê(aP, bQ) = ê(P , Q)ab for all P, Q ∈ G1 and all integers
a, b.

The Bilinear Diffie-Hellman (BDH) assumption is as
follows. Let a, b, c be chosen randomly from [1, . . . ,

q − 1], and let P be chosen randomly from G1. Given
(P, aP, bP, cP ), it is hard to compute ê(P , P )abc.

Actually, the BDH assumption is a conjecture about
hardness as the size of the problem increases. To state the
assumption more formally, we define a ‘BDH parameter
generator’. This is an efficient randomised algorithm that
takes as input a ‘security parameter’ k, and outputs
descriptions of groups G1 and G2 of prime order q > 2k ,
together with the description of an efficiently computable
bilinear map ê : G1 ×G1 → G2.

Now, let A be any randomised algorithm for solving
BDH problem instances with respect to any G1, G2, ê that
might be output by the BDH parameter generator. The BDH
assumption says that if the running time of A is polynomial
in k, then the probability of success for A is asymptotically
negligible (i.e. less than 1/kλ for all constant λ when k is
sufficiently large). Here, the probability of success for A is
over the random choices of the BDH parameter generator,
the random choice of P and the random choice of a, b, c.

A number of candidate constructions for BDH parameter
generators have been proposed that are conjectured to satisfy
the BDH assumption. In these constructions, the group G1

may be a special kind of elliptic curve or algebraic variety,
and the bilinear mapping may be the modified ‘Weil pairing’
or ‘Tate pairing’. See Boneh and Franklin (2003) for a
discussion of some of these constructions. Further details
about the underlying mathematics will not be needed for this
survey.

2.2.2 Binary tree encryption

Let T be a full binary tree of depth �. Let each node in the
tree be labelled by a bitstring as follows. The root is labelled
with the empty string ε. The left child of the root is labelled
by 0 and the right child of the root is labelled by 1. The four
nodes at depth 2 have labels 00, 01, 10, 11 (from left to right).
In general, if a node is labelled with bitstring w, then its left
child has label w0 and its right child has label w1. Note that all
of the nodes at depth t in the tree are labelled with bitstrings
of length t .

There is a single public encryption key PK for the tree.
There is a secret decryption key for each node of the tree.

Let SKw denote the secret key of the node with label w. The
functionality of binary tree encryption and decryption is as
follows (see Figure 3):

• Encryption takes three inputs: some message M , some
node label w and the public key PK. It returns a
ciphertext C.

• Decryption takes three inputs: some ciphertext C,
some node label w and the secret key SKw. It returns
the original message M (assuming that the same
node label was used for encryption).

Figure 3 Binary tree encryption
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In addition, there is an efficient ‘key derivation’ algorithm
with the following functionality. It takes as input the public
key PK, some node with label w, and the secret key SKw.
It outputs secret keys SKw0 and SKw1 for the nodes with
labels w0 and w1.

The existence of an efficient key derivation algorithm
implies that any ciphertext for the node labelled by w

can be decrypted, given the secret key for any ancestor
of the node in the tree. Intuitively, the security guarantee
for binary tree encryption is that no other ciphertexts
are compromised by the exposure of the secret key for any
node in the tree (See Canetti et al. (2003) for details and
variants of the security model).

For simplicity, the specification of binary tree encryption
does not explicitly mention key generation.

2.2.2.1 Construction: Here is one construction for binary
tree encryption, due to Canetti et al. (2003) and based on
earlier constructions for identity-based encryption (Boneh
and Franklin, 2003; Gentry and Silverberg, 2002).

Let ê, G1, G2 be a hard instance of the BDH problem,
where G1 and G2 are groups of order q for some large
prime q. Let P be a random element of G1. Let Q = aP ,
where a is some random integer in [0, . . . , q − 1]. Let H1

be a hash function from bitstrings of length at most � to G1.
Let H2 be a hash function from G2 to bitstrings of length n,
where n is the length of the messages to be encrypted. Let �

be the depth of the binary tree.
The public key for the binary tree will consist of q, �, P ,

Q and descriptions of ê, G1, G2, H1, H2.
Let w = w1, w2, . . . , wt be the label of a node at

depth t in the tree. The secret key SKw will consist of
t + 1 elements of G1. These t + 1 elements will be denoted
(Rw|1, Rw|2, . . . , Rw|t−1, Rw, Sw), where w|i denotes the first
i bits of w. For example, the root has secret key SKε = (Sε),
the left child of the root has secret key SK0 = (R0, S0) and
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the right child of the left child of the root has secret key
SK01 = (R0, R01, S01).

Here is a description of the key derivation algorithm,
given the secret key SKw for some node with label w.
Choose random integers ρw0 and ρw1 in [1, . . . , q −
1]. Let Rw0 = ρw0P and Rw1 = ρw1P . Let
Sw0 = Sw + ρw0H1(w0) and Sw1 = Sw + ρw1H1(w1).
Then the secret key for the left child is SKw0 =
(Rw|1, Rw|2, . . . , Rw|t−1, Rw, Rw0 , Sw0) and for the right
child is SKw1 = (Rw|1, Rw|2, . . . , Rw|t−1, Rw, Rw1 , Sw1).
The root key SKε can be computed as aH1(ε).

Consider encryption under the public key PK of some
n-bit message M for some node with label w at depth
t in the tree. The ciphertext always consists of t + 2
items that can be viewed as the message exclusive-OR’ed
with a random one-time pad, together with t + 1 ‘hints’
to help the decryptor recover the pad. The encryptor
chooses a random γ ← [1, . . . , q − 1] and computes
(γP, γH1(w1), γH1(w1w2), . . . , γH1(w), M ⊕ H2(ê(Q,

H1(ε))
γ )). In the special case of encryption for the root, the

ciphertext includes just one hint γP .
To decrypt ciphertext C = (U0, U1, . . . , Ut , V ) for the

node with label w and secret key SKw, proceed as follows.
The decryptor uses the ‘hints’ to recover the random one-time
pad. Let num = ê(U0, Sw). Let denom = ∏t

i=1 ê(Rw|i , Ui).
Then d = H2(num/denom) is the random one-time pad used
by the encryptor. That is, M = V ⊕ d . In the special of
decryption for the root, denom = 1 and d = num. To recap:

• Binary Tree Public Key: (q, G1, G2, ê,
P, Q = αP, H1, H2), for random α← [1, . . . , q − 1].

• Binary Tree Root Secret Key: αH1(ε).

• Binary Tree Key Derivation: choose random
ρw0 , ρw1 ← [1, . . . q − 1], and then

– SKw0 = (Rw|1, Rw|2, . . . , Rw|t−1, Rw, Rw0 =
ρw0P, Sw0 = Sw + ρw0H1(w0)).

– SKw1 = (Rw|1, Rw|2, . . . , Rw|t−1, Rw, Rw1 =
ρw1P, Sw1 = Sw + ρw1H1(w1)).

• Binary Tree Encrypt of M for node w: (γP, γH1(w1),
γH1(w1w2), . . . , γH1(w), M ⊕H2(ê(Q, H1(ε))

γ )).

• Binary Tree Decrypt of (U0, U1, . . . , Ut , V ) for node w:
V ⊕ (H2(ê(U0, Sw)/(

∏t
i=1 ê(Rw|i , Ui).

The correctness of this construction relies on the bilinearity
of the mapping ê. To see that decryption is successful, note
that the decryptor reconstructs the same random one-time pad
as the encryptor:

num = ê(U0, Sw)

= ê

(
γP, αH1(ε)+

t∑
i=1

ρw|iH1(w|i)
)

= ê(P , H1(ε))
αγ

(
t∏

i=1

ê(P , H1(w|i))γρw|i

)

denom =
t∏

i=1

ê(Rw|i , Ui) =
t∏

i=1

ê(ρw|iP , γH1(w|i))

=
t∏

i=1

ê(P , H1(w|i))γρw|i

Thus, num/denom = ê(P , H1(ε))
αγ as needed.

The security of this binary tree encryption scheme can
be strengthened by using a variant of the Fujisaki–Okamoto
transform (Fujisaki and Okamoto, 1999); see Canetti et al.
(2003) for details. A recent improved construction for binary
tree encryption is due to Boneh et al. (2005).

2.2.3 FSE from binary tree encryption

The CHK construction for FSE is built from binary tree
encryption as follows. Let T be a complete binary tree of
depth �. Then T has 2�+1−1 nodes. Let the nodes be labelled
with bitstrings as described earlier, and assume that we are
given a binary tree encryption scheme for T .

Each node of T will correspond to a unique time period,
according to a ‘preorder traversal’of T . A preorder traversal is
the order in which nodes are first visited in a depth-first search
of the tree. For convenience, the time periods are numbered
from 0 to N − 1, where N = 2�+1 − 1.

The public encryption key for the FSE scheme is the
public key of the underlying binary tree encryption scheme.
To encrypt a message during the ith time period in the FSE
scheme, encrypt the message in the underlying binary tree
encryption scheme with respect to the ith node in the preorder
traversal of the tree.

The secret decryption key for the FSE scheme is a subset
of secret decryption keys for the binary tree encryption
scheme. The subset changes for each time period. The
crucial invariant that must be maintained is that the key
derivation algorithm for the binary tree encryption scheme,
when applied repeatedly to the keys in the subset, should
yield keys for the nodes corresponding to all time periods
greater than or equal to i, but not for any time periods less
than i.

The efficient key update function for the FSE scheme is
a simple stack-based algorithm that maintains this invariant.
The secret keys in the subset will be organised as a stack.
During time period i, the secret key at the top of the stack
will always be SKw, where the node with label w is the ith
node visited in the preorder traversal of the tree T . Initially,
the stack contains only SKε .

Here are the details of the FSE construction:

• Construct a binary tree encryption scheme for a
complete binary tree T of depth �, with public key PK,
secret key SKw for node with label w, key derivation
algorithm Der(PK, w, SKw), encryption algorithm
Enc(PK, w, M) and decryption algorithm
Dec(PK, w, SKw, C).

• FSE Public Key: PK (binary tree public key).

• FSE Initial Secret Key: SKε (binary tree root
secret key).

• FSE Encrypt message M in time period i:
Enc(PK, w, M), where the node with label w is
the ith node visited in the preorder traversal of the
tree T .
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• FSE Decrypt ciphertext C in time period i:
Dec(PK, w, SKw, C), where the node with label w is
the ith node visited in the preorder traversal of the
tree T .

• FSE key update at end of time period i: pop the top key
off of the stack. This is SKw, where the node with label
w is the ith node visited in the preorder traversal of the
tree T . If w is not a leaf, then run the key derivation
algorithm to compute SKw0 and SKw1 , and push them
onto the stack in reverse order (first push SKw1 and then
push SKw0 ).

2.2.3.1 Example Suppose that the complete binary tree T has
depth 3. A preorder traversal of T would visit its 15 nodes
in this order: ε, 0, 00, 000, 001, 01, 010, 011, 1, 10, 100,
101, 11, 110, 111. The node labelled by ε (root) corresponds
to time period 0, the node labelled by 0 corresponds to time
period 1, the node labelled by 00 corresponds to time period
2 and so forth.

During time period 0, the subset of keys consists of just
SKε . At the end of time period 0, pop SKε off the stack,
derive SK0, SK1 and push them onto the stack in reverse
order. During time period 1, the subset of keys consists of
SK0, SK1 organised as a stack (in this order from top to
bottom). At the end of time period 1, pop SK0 off the stack,
derive SK00, SK01, and push them onto the stack in reverse
order. During time period 2, the subset of keys consists of
SK00, SK01, SK1, organised as a stack (in this order from top
to bottom). At the end of time period 3, pop SK00 off the stack,
derive SK000, SK001 and push them onto the stack in reverse
order. During time period 4, the subset of keys consists of
SK000, SK001, SK01, SK1 organised as a stack (in this order
from top to bottom). At the end of time period 4, pop SK000

from the stack and do nothing else, because this corresponds
to a leaf in the tree. During time period 5, the subset of keys
consists of SK001, SK01, SK1. Note that the secret key for the
current time period is always at the top of the stack. Also
note that the keys in the stack for the current time period can
be used to derive all future keys but no past keys.

Here is an alternative description of the stack of secret
keys during the time period i, i ≥ 1. Let w be the label of
the ith node visited in the preorder traversal of the tree. Then
SKw is at the top of the stack. Let w = w1, . . . , wt be the
binary expansion of w, where t is the depth of the node in
the tree. Then the rest of the stack consists of keys of the
form SKw1,...,wj−11, where 1 ≤ j ≤ t and wj = 0. These are
sorted by the size of j , with the smallest j on the bottom of
the stack.

The security of the FSE scheme is closely related to the
security of the underlying binary tree encryption scheme.
In particular, it can be shown to resist a very strong chosen
ciphertext attack when the underlying binary tree encryption
scheme has been strengthened with the Fujisaki–Okamoto
transformation. The proof of security is in the random oracle
model, and under the BDH assumption.

Remarkably, Canetti et al. show that the random oracle
model can be avoided here. That is, protection against a very
strong chosen ciphertext attack can be proved for a different
FSE construction under the related ‘Decisional Bilinear
Diffie-Hellman Assumption’. See Canetti et al. (2003) for
details.

3 Intrusion resilience in the public
key setting

In this section, we survey intrusion resilient cryptosystems
in the public key setting. We begin with intrusion resilient
public key encryption, and then discuss intrusion resilient
signature schemes.

The notion of intrusion resilience – an elaboration of
forward security in the public key setting – was first
formulated by Itkis and Reyzin (2002), building on ideas
for ‘key-insulated’ cryposystems due to Dodis et al. (2002,
2003). The architecture for key-insulated cryptosystems
is similar to that of intrusion resilient cryptosystems, but
without incorporating forward security (and in fact allowing
a kind of ‘random access’ of the secret keys).

3.1 Intrusion resilient encryption

Intrusion Resilient Encryption (IRE) (Dodis et al., 2003) is an
extension of the functionality of forward secure encryption.
There are two entities, called the ‘user’ and the ‘base’. There
is a single public encryption key that does not change over
time. The user has a secret decryption key that changes
over time. The base also has secret information that changes
over time. In addition, there is a flow of secret messages in one
direction only, from the base to the user. Thus, the evolution
of the user’s secrets is influenced by the secret messages sent
to it by the base (see Figure 4).

Figure 4 Intrusion resilient encryption
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There are actually two levels of granularity of time in an IRE
scheme. At the upper level, time is divided into periods just
as in forward secure encryption. These periods are numbered
0, 1, 2, . . . , N − 1.

At the lower level, each time period is divided into an
arbitrary number of ‘refresh sub-periods’. The sub-periods
of time period i are numbered i0, i1, . . . , ir . The value of r

may be different for each time period, and is not determined
beforehand. For convenience, the first sub-period of each
period i is numbered i0.

Only the upper level time granularity is visible to the
outside user. Anyone who encrypts a message using the
public key only needs to know the current time period,
and not the current refresh sub-period. The lower level
time granularity reflects the frequency with which the user
and base re-randomise their secret information. The user’s
secret key may be different in every refresh sub-period of
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period i. Nevertheless, all of these refreshed versions of the
user’s secret key will be able to decrypt a message that was
encrypted during period i.

The power of the lower level time granularity is that it
imposes an extra restriction on an attacker. The attacker
learns nothing useful unless he/she compromises the
user and the base in the same refresh sub-period. The size
of the refresh sub-period can be made very small to make the
attacker’s task difficult, while the upper level time granularity
can be more leisurely to simplify the encryption process for
outside users.

The security guarantees are very strong. If the secrets
of the user and the base are compromised in the same
refresh sub-period, then the system ensures ‘forward
security’. That is, the attacker gains the ability to decrypt
all future ciphertexts, while all past ciphertexts remain
unreadable. If the secrets of the user are compromised in
any period, then of course the attacker gains the ability to
decrypt all ciphertexts for that period. Otherwise, the user
and base may be compromised repeatedly by the attacker
over time with no loss of security whatsoever (see Figure 5).
In particular, note that the adversary gains no advantage when
the secrets of the base only are compromised in any time
period.

Figure 5 Intrusion resilience security
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3.1.1 Functional specification of IRE

An IRE scheme has the following components:

• An efficient encryption algorithm (Enc) that takes as
input a public key PK, a time period i and a message M .
The output is the ciphertext (i, C).

• An efficient decryption algorithm (Dec) that takes as
input the public key PK, the current secret key SKir and
the ciphertext (i, C). The output is the original message
M . That is, decryption (during any refresh sub-period of
time period i) inverts encryption (during time period i)
in the standard way.

• An efficient base key update algorithm (UpdBase),
that takes as input the current base key SKBir .
The output is a new base key SKBi+1.0 for the next time
period, and a key update message SKUi to be sent to the
user.

• An efficient user key update algorithm (UpdUser), that
takes as input the current user key SKUir and a key

update message SKUi sent from the base. The output is
a new user key SKi+1.0 for the next time period.

• An efficient base key refresh algorithm (RefBase), that
takes as input the current base key SKBir . The output is
a new base key SKBir+1 (for the next refresh sub-period
of the current time period) and a key refresh message
SKRir to be sent to the user.

• An efficient user key refresh algorithm (RefUser), that
takes as input the current user key SKir and a key
refresh message SKRir from the base. The output is a
new user key SKi.r+1 (for the next refresh sub-period of
the current time interval).

For simplicity, the functional specification does not explicitly
include the key generation algorithm.

3.1.2 Construction for IRE

The construction for IRE is closely related to the earlier
construction for forward-secure encryption. The IRE
construction is also built on top of a binary tree encryption
scheme. Essentially the same binary tree encryption scheme
is used, although a small optimisation is made in the key
derivation algorithm.

In the IRE construction, only the leaves of the binary
tree correspond to the time periods. Thus, a complete binary
tree of depth � can support N = 2� time periods. The time
interval t corresponds to the leaf whose �-bit label is a binary
representation of t . The �-bit binary representation of t is
denoted < t >= t1, . . . , t�. For notational convenience, we
sometimes view < t > as the string t0, t1, . . . , t� where t0 = ε

(the empty string).
During any time period t , the user has the binary tree secret

key for the leaf with label < t >. This will be sufficient for
the user to decrypt all of the ciphertexts for that time period.

Let ρ(t) = {t0, t1, . . . , tj−11 : tj = 0}. (For example,
when � = 4, ρ(2) = {1, 01, 0011}.) The user and base will
share the binary tree secret keys for all of the nodes whose
labels are in ρ(t). This set consists of all right siblings of the
nodes on the path from the root to the leaf with the appropriate
label. Notice that every leaf whose label is larger than t is
contained in the subtree rooted at some node whose label is
in ρ(t).

During each time period t , the user holds shares of all
keys for nodes whose labels are in ρ(t), along with the
secret key for the leaf with label < t >. The base holds
the corresponding shares of all keys for nodes whose labels
are in ρ(t), but the base holds no information about the secret
key for the leaf with label < t >. The user’s information is
sufficient to decrypt all messages for time period < t >,
but insufficient to execute a key update by itself. The base’s
information is insufficient to decrypt messages for time
period < t > by itself, and insufficient to execute a key
update by itself.

Together, however, the base and the user have
sufficient information to perform a key update. In fact, the
key update procedure only needs a single message from
the base to the user. The key refresh procedure is also done
with a single message from the base to the user (Dodis
et al., 2003).
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3.2 Intrusion resilient signatures

The notion of ‘intrusion resilient signature’is analogous to the
notion of IRE described in the preceding section. There are
again two entities: user and base. The user’secret signing key
changes over time, and the corresponding public verification
key does not change. The base’s secret information changes
over time. The flow of secret messages, and the evolution
of the user’s secrets, is the same as with IRE. Figure 4 can
be simply changed to capture the desired functionality, as
follows: flip the arrow from M to Bob (input to Bob’s signing
algorithm), flip the arrow from Bob to Alice and change C to
sig (output of Bob’s signing algorithm) and add an arrow
leading out of Alice (‘yes/no’ output of Alice’s signature
verification algorithm).

The two levels of granularity of time are the same as with
IRE, and Figure 5 illustrates this with no changes needed. The
security guarantees are similarly strong. Forward security
for the signature scheme is preserved if user and base
are compromised in the same refresh sub-period. Otherwise,
the attacker only gains the ability to sign for those specific
time periods during which he/she successfully compromises
the user.

The first construction of an intrusion resilient signature
scheme (Itkis and Reyzin, 2002) is based on a forward
secure signature scheme by the same authors (Itkis and
Reyzin, 2001). Its security is based on a variant of the strong
RSA assumption (for RSA moduli restricted to products of
safe primes), with a proof of security in the random oracle
model. The algorithms for signing and verifying are quite
efficient.

A generic construction for intrusion resilient signature
schemes is given by Itkis (2002). It can be built from any
ordinary signature scheme. This scheme is proved secure with
respect to a somewhat stronger notion of security than (Itkis
and Reyzin, 2002), that is, to withstand a ‘fully adaptive’
adversary. Intuitively, a fully adaptive adversary can defer
each attack decision within a single round until the last
possible moment.

4 Conclusion and further pointers to
the literature

In conclusion, we have surveyed key evolving cryptosystems
in the public key setting. Our focus has been on two
approaches that can be applied to both public key encryption
and digital signature schemes: forward security and intrusion
resilience.

There are other key evolving cryptosystems in the public
key setting that are of interest. For example, ‘tamper
evident’ signature schemes (Itkis, 2003) are similar to
forward secure signature schemes, but the secret signing
key evolves in a truly unpredictable way (using a source of
real randomness as one of the inputs). A public ‘divergence
test’indicates whether or not two signatures were created with
signing keys from the same evolutionary path. As long as the
true signer continues to sign messages honestly after the key
exposure, the existence of a forging attacker can be detected
(although it is not possible to tell which are the forgeries and
which are the honest signatures).

Some researchers have considered key evolving
cryptosystems where the public key is allowed to evolve
(Naccache et al., 2001; Itkis and Xie, 2003). This can protect
against key exposure that is coercive, for example, if an
attacker demands your secret key at some point in time.

The recent survey by Itkis (2006) is recommended for
other key evolving cryptographic constructs, applications and
insights.
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