# Design Theory for Relational Databases (cf. Chapter 3)

Functional Dependencies

Decompositions

Normal Forms

acknowledgment: slides by Jeff Ullman @ Stanford

#### **Functional Dependencies**

- X -> Y is an assertion about a relation R that whenever two tuples of R agree on all the attributes of X, then they must also agree on all attributes in set Y.
  - Say " $X \rightarrow Y$  holds in R."
  - Convention: ..., X, Y, Z represent sets of attributes; A, B, C,
     ... represent single attributes.
  - Convention: no set formers in sets of attributes, just ABC, rather than {A,B,C}.

## Splitting Right Sides of FD's

- $X->A_1A_2...A_n$  holds for R exactly when each of  $X->A_1$ ,  $X->A_2$ ,...,  $X->A_n$  hold for R.
- Example: A->BC is equivalent to A->B and A->C.
- There is no splitting rule for left sides.
- We'll generally express FD's with singleton right sides.

### Example: FD's

#### Drinkers(name, addr, beersLiked, manf, favBeer)

- Reasonable FD's to assert:
  - 1. name -> addr favBeer
    - Note this FD is the same as name -> addr and name -> favBeer.
  - 2. beersLiked -> manf

#### **Example:** Possible Data



Because beersLiked -> manf

#### **Keys of Relations**

- K is a <u>superkey</u> for relation R if K functionally determines all of R.
- K is a key for R if K is a superkey, but no proper subset of K is a superkey.

#### **Example:** Superkey

Drinkers(name, addr, beersLiked, manf, favBeer)

- {name, beersLiked} is a superkey because together these attributes determine all the other attributes.
  - name -> addr favBeer
  - beersLiked -> manf

#### Example: Key

- {name, beersLiked} is a key because neither {name} nor {beersLiked} is a superkey.
  - name doesn' t -> manf; beersLiked doesn' t -> addr.
- There are no other keys, but lots of superkeys.
  - Any superset of {name, beersLiked}.

#### Where Do Keys Come From?

- 1. Just assert a key *K*.
  - The only FD's are K -> A for all attributes A.
- 2. Assert FD's and deduce the keys by systematic exploration.

## More FD's From "Physics"

 Example: "no two courses can meet in the same room at the same time" tells us: hour room -> course.

### Inferring FD's

• We are given FD's

$$X_1 \to A_1, X_2 \to A_2, ..., X_n \to A_n$$

and we want to know whether an FD  $Y \rightarrow B$  must hold in any relation that satisfies the given FD's.

- Example: If  $A \rightarrow B$  and  $B \rightarrow C$  hold, surely  $A \rightarrow C$  holds, even if we don't say so.
- Important for design of good relation schemas.

#### Inference Test

 To test if Y -> B, start by assuming two tuples agree in all attributes of Y.

```
γ
00000000...0
00000??...?
```

#### Inference Test – (2)

- Use the given FD's to infer that these tuples must also agree in certain other attributes.
  - If B is one of these attributes, then  $Y \rightarrow B$  is true.
  - Otherwise, the two tuples, with any forced equalities, form a two-tuple relation that proves Y -> B does not follow from the given FD's.

#### Closure Test

- An easier way to test is to compute the closure of Y, denoted Y<sup>+</sup>.
- Basis:  $Y^{+} = Y$ .
- Induction: Look for an FD's left side X that is a subset of the current Y +. If the FD is X -> A, add A to Y +.



## Finding All Implied FD's

- Motivation: "normalization," the process where we break a relation schema into two or more schemas.
- Example: ABCD with FD's AB ->C, C ->D, and D ->A.
  - Decompose into ABC, AD. What FD's hold in ABC?
  - Not only  $AB \rightarrow C$ , but also  $C \rightarrow A$ !

#### Why?



Thus, tuples in the projection with equal C's have equal A's;

$$C \rightarrow A$$

#### **Basic Idea**

- 1. Start with given FD's and find all *nontrivial* FD's that follow from the given FD's.
  - Nontrivial = right side not contained in the left.

2. Restrict to those FD's that involve only attributes of the projected schema.

#### Simple, Exponential Algorithm

- 1. For each set of attributes X, compute X<sup>+</sup>.
- 2. Add  $X \rightarrow A$  for all A in  $X^+ X$ .
- 3. However, drop  $XY \rightarrow A$  whenever we discover  $X \rightarrow A$ .
  - igoplus Because XY ->A follows from X ->A in any projection.
- 4. Finally, use only FD's involving projected attributes.

#### A Few Tricks

- No need to compute the closure of the empty set or of the set of all attributes.
- If we find X<sup>+</sup> = all attributes, so is the closure of any superset of X.

## Example: Projecting FD's

- ABC with FD's A ->B and B ->C. Project onto AC.
  - $-A^{+}=ABC$ ; yields  $A\rightarrow B$ ,  $A\rightarrow C$ .
    - We do not need to compute AB + or AC +.
  - $-B^{+}=BC$ ; yields  $B \rightarrow C$ .
  - $-C^{+}=C$ ; yields nothing.
  - $-BC^{+}=BC$ ; yields nothing.

#### **Example -- Continued**

- Resulting FD's:  $A \rightarrow B$ ,  $A \rightarrow C$ , and  $B \rightarrow C$ .
- Projection onto AC: A ->C.
  - Only FD that involves a subset of {A,C}.

#### A Geometric View of FD's

- Imagine the set of all *instances* of a particular relation.
- That is, all finite sets of tuples that have the proper number of components.
- Each instance is a point in this space.

### Example: R(A,B)



#### An FD is a Subset of Instances

- For each FD X -> A there is a subset of all instances that satisfy the FD.
- We can represent an FD by a region in the space.
- Trivial FD = an FD that is represented by the entire space.
  - Example: A -> A.

### Example: A -> B for R(A,B)



#### Representing Sets of FD's

- If each FD is a set of relation instances, then a collection of FD's corresponds to the intersection of those sets.
  - Intersection = all instances that satisfy all of the FD's.

## Example



## Implication of FD's

- If an FD  $Y \rightarrow B$  follows from FD's  $X_1 \rightarrow A_1$ , ...,  $X_n \rightarrow A_n$ , then the region in the space of instances for  $Y \rightarrow B$  must include the intersection of the regions for the FD's  $X_i \rightarrow A_i$ .
  - That is, every instance satisfying all the FD's  $X_i$  ->  $A_i$  surely satisfies Y -> B.
  - But an instance could satisfy Y -> B, yet not be in this intersection.

## Example



#### Relational Schema Design

- Goal of relational schema design is to avoid anomalies and redundancy.
  - Update anomaly: one occurrence of a fact is changed, but not all occurrences.
  - Deletion anomaly: valid fact is lost when a tuple is deleted.

#### Example of Bad Design

#### Drinkers(<u>name</u>, addr, <u>beersLiked</u>, manf, favBeer)

| name    | addr         | beersLiked | manf   | favBeer   |
|---------|--------------|------------|--------|-----------|
| Janeway | Voyager      | Bud        | A.B.   | WickedAle |
| Janeway | <b>???</b> ? | WickedAle  | Pete's | ????      |
| Spock   | Enterprise   | Bud        | ???    | Bud       |

Data is redundant, because each of the ???' s can be figured out by using the FD's name -> addr favBeer and beersLiked -> manf.

## This Bad Design Also Exhibits Anomalies

| name    | addr       | beersLiked | manf   | favBeer   |
|---------|------------|------------|--------|-----------|
| Janeway | Voyager    | Bud        | A.B.   | WickedAle |
| Janeway | Voyager    | WickedAle  | Pete's | WickedAle |
| Spock   | Enterprise | Bud        | A.B.   | Bud       |

- Update anomaly: if Janeway is transferred to *Intrepid*, will we remember to change each of her tuples?
- Deletion anomaly: If nobody likes Bud, we lose track of the fact that Anheuser-Busch manufactures Bud.

#### Boyce-Codd Normal Form

- We say a relation R is in BCNF if whenever X -> Y is a nontrivial FD that holds in R, X is a superkey.
  - Remember: nontrivial means Y is not contained in X.
  - Remember, a *superkey* is any superset of a key (not necessarily a proper superset).

#### Example

Drinkers(<u>name</u>, addr, <u>beersLiked</u>, manf, favBeer)
FD's: name->addr favBeer, beersLiked->manf

- Only key is {name, beersLiked}.
- In each FD, the left side is not a superkey.
- Any one of these FD's shows Drinkers is not in BCNF

#### **Another Example**

Beers(<u>name</u>, manf, manfAddr)

FD's: name->manf, manf->manfAddr

- Only key is {name}.
- name->manf does not violate BCNF, but manf->manfAddr does.

#### Decomposition into BCNF

- Given: relation R with FD's F.
- Look among the given FD's for a BCNF violation X -> Y.
  - If any FD following from F violates BCNF, then there will surely be an FD in F itself that violates BCNF.
- Compute *X* <sup>+</sup>.
  - Not all attributes, or else X is a superkey.

### Decompose R Using X -> Y

- Replace R by relations with schemas:
  - 1.  $R_1 = X^+$ .
  - 2.  $R_2 = R (X^+ X^-)$ .
- Project given FD's F onto the two new relations.

# **Decomposition Picture**



#### **Example: BCNF Decomposition**

Drinkers(<u>name</u>, addr, <u>beersLiked</u>, manf, favBeer)

```
F = name->addr, name -> favBeer, beersLiked-
>manf
```

- Pick BCNF violation name->addr.
- Close the left side: {name}+ = {name, addr, favBeer}.
- Decomposed relations:
  - 1. Drinkers1(<u>name</u>, addr, favBeer)
  - 2. Drinkers2(name, beersLiked, manf)

### **Example -- Continued**

- We are not done; we need to check Drinkers1 and Drinkers2 for BCNF.
- Projecting FD's is easy here.
- For Drinkers1(<u>name</u>, addr, favBeer), relevant FD's are name->addr and name->favBeer.
  - Thus, {name} is the only key and Drinkers1 is in BCNF.

### **Example -- Continued**

- For Drinkers2(<u>name</u>, <u>beersLiked</u>, manf), the only FD is <u>beersLiked</u>->manf, and the only key is {name, beersLiked}.
  - Violation of BCNF.
- beersLiked<sup>+</sup> = {beersLiked, manf}, so we decompose *Drinkers2* into:
  - 1. Drinkers3(beersLiked, manf)
  - 2. Drinkers4(name, beersLiked)

### Example -- Concluded

- The resulting decomposition of *Drinkers*:
  - Drinkers1(<u>name</u>, addr, favBeer)
  - 2. Drinkers3(beersLiked, manf)
  - 3. Drinkers4(name, beersLiked)
- Notice: Drinkers1 tells us about drinkers, Drinkers3
  tells us about beers, and Drinkers4 tells us the
  relationship between drinkers and the beers they
  like.

#### Third Normal Form -- Motivation

- There is one structure of FD's that causes trouble when we decompose.
- *AB* ->*C* and *C* ->*B*.
  - Example: A =street address, B =city, C =zip code.
- There are two keys, {A,B} and {A,C}.
- C->B is a BCNF violation, so we must decompose into AC, BC.

#### We Cannot Enforce FD's

- The problem is that if we use AC and BC as our database schema, we cannot enforce the FD AB ->C by checking FD's in these decomposed relations.
- Example with A = street, B = city, and C = zip on the next slide.

#### An Unenforceable FD

| street       | zip   |
|--------------|-------|
| 545 Tech Sq. | 02138 |
| 545 Tech Sq. | 02139 |

| city      | zip   |  |
|-----------|-------|--|
| Cambridge | 02138 |  |
| Cambridge | 02139 |  |
|           |       |  |

Join tuples with equal zip codes.

| street       | city      | zip   |
|--------------|-----------|-------|
| 545 Tech Sq. | Cambridge | 02138 |
| 545 Tech Sq. | Cambridge | 02139 |
|              |           |       |

Although no FD's were violated in the decomposed relations, FD street city -> zip is violated by the database as a whole.

#### 3NF Lets Us Avoid This Problem

• 3<sup>rd</sup> Normal Form (3NF) modifies the BCNF condition so we do not have to decompose in this problem situation.

An attribute is prime if it is a member of any key.

 X ->A violates 3NF if and only if X is not a superkey, and also A is not prime.

### Example: 3NF

- In our problem situation with FD's AB -> C and C -> B, we have keys AB and AC.
- Thus A, B, and C are each prime.
- Although C ->B violates BCNF, it does not violate 3NF.

#### What 3NF and BCNF Give You

- There are two important properties of a decomposition:
  - 1. Lossless Join: it should be possible to project the original relations onto the decomposed schema, and then reconstruct the original.
  - 2. Dependency Preservation: it should be possible to check in the projected relations whether all the given FD's are satisfied.

#### 3NF and BCNF -- Continued

- We can get (1) with a BCNF decomposition.
- We can get both (1) and (2) with a 3NF decomposition.
- But we can't always get (1) and (2) with a BCNF decomposition.
  - street-city-zip is an example.

#### Testing for a Lossless Join

- If we project R onto  $R_1, R_2, ..., R_k$ , can we recover R by rejoining?
- Any tuple in R can be recovered from its projected fragments.
- So the only question is: when we rejoin, do we ever get back something we didn't have originally?

#### The Chase Test

- Suppose tuple t comes back in the join.
- Then t is the join of projections of some tuples of R, one for each R<sub>i</sub> of the decomposition.
- Can we use the given FD's to show that one of these tuples must be t?

### The Chase -(2)

- Start by assuming t = abc....
- For each i, there is a tuple s<sub>i</sub> of R that has a, b,
   c,... in the attributes of R<sub>i</sub>.
- s<sub>i</sub> can have any values in other attributes.
- We'll use the same letter as in t, but with a subscript, for these components.

### **Example:** The Chase

- Let R = ABCD, and the decomposition be AB, BC, and CD.
- Let the given FD's be C->D and B ->A.
- Suppose the tuple t = abcd is the join of tuples projected onto AB, BC, CD.

The tuples of R projected onto AB, BC, CD.

#### The Tableau



We've proved the second tuple must be *t*.

### Summary of the Chase

- If two rows agree in the left side of a FD, make their right sides agree too.
- 2. Always replace a subscripted symbol by the corresponding unsubscripted one, if possible.
- If we ever get an unsubscripted row, we know any tuple in the project-join is in the original (the join is lossless).
- 4. Otherwise, the final tableau is a counterexample.

### **Example:** Lossy Join

- Same relation R = ABCD and same decomposition.
- But with only the FD C->D.

#### The Tableau

These projections rejoin to form

abcd.A b c d  $a_2$  b c d d d d

These three tuples are an example *R* that shows the join lossy. *abcd* is not in *R*, but we can project and rejoin to get *abcd*.

Use *C->D* 

### **3NF Synthesis Algorithm**

- We can always construct a decomposition into 3NF relations with a lossless join and dependency preservation.
- Need minimal basis for the FD's:
  - 1. Right sides are single attributes.
  - 2. No FD can be removed.
  - 3. No attribute can be removed from a left side.

#### Constructing a Minimal Basis

- 1. Split right sides.
- Repeatedly try to remove an FD and see if the remaining FD's are equivalent to the original.
- 3. Repeatedly try to remove an attribute from a left side and see if the resulting FD's are equivalent to the original.

## 3NF Synthesis – (2)

- One relation for each FD in the minimal basis.
  - Schema is the union of the left and right sides.
- If no key is contained in an FD, then add one relation whose schema is some key.

### **Example: 3NF Synthesis**

- Relation R = ABCD.
- FD's A->B and A->C.
- Decomposition: AB and AC from the FD's, plus AD for a key.

#### Why It Works

- Preserves dependencies: each FD from a minimal basis is contained in a relation, thus preserved.
- Lossless Join: use the chase to show that the row for the relation that contains a key can be made all-unsubscripted variables.
- 3NF: hard part a property of minimal bases.