Announcements & Overview

Midterm results: VWednesday
HW3 due Wednesday @ | 1:59pm

Start on Database Internals: Data Storage on Disk
— Warning: broad overview ... “typical” cases, generalities
— Many of these topics covered in more depth in 165B
Reading

— Chapter |3

Basic Database Architecture

[Web Forms] [Application Front Ends] [

SQL Interface

¢ /
\ SQL Commands

v
DBMS Plan Executor Parser
Query
o Evaluation
Operator Evaluator Optimizer Engine
v
<—> File and Access Methods [€——>
Transaction
Manager /
Recovery
<—> Buffer Manager <> Manager
Lock v
Manager
<—> Disk Space Manager <—>

Concurrency Control

Index Files
v > System
Data Files Celiliog

Up to now ...

Bulk of
remainder
of the
course ...

10,000 Foot View of Query Optimization
* Given an SQL query

* Translate it into relational algebra

* Find equivalent query plans

— different ways to order operators

— different ways to implement each operator
* Pick a cheap plan (per estimated cost)

* Execute the plan ...

How are operators implemented?

How is data stored on disk?

The Plan

Relational Algebra Query Tree

'

Search foracheapplan —» Query Optimization °
Join algorithms, etc. —— | Relational Operator Algorithms e
Heap, index, etc. — File and Access Methods a
Operating system issues —— » Buffer Management

(which may be handled by

a DBMS or by the OS) —> Disk Space Management

disk access is expensive!! Q

ECS-165A 4

Types of Physical Storage
* Cache

— fastest and most costly form of storage _
— volatile ... content lost if power failure, system crash etc.
- managed by the hardware and/or operating system

* Main memory
— fast access

— in most applications, too small to store
an entire DB

— Volatile

Note: many “main memory only” databases are available
. and used increasingly for applications with small storage
requirements and as memory sizes increase

ECS-165A 5

Types of Physical Storage
 Magnetic ("Hard”) Disk Storage

— primary medium for long-term storage of data

— typically can store entire database (all relations and access
structures)

* data must be moved from disk to main memory for access and
written back for storage

* direct-access, i.e., it is possible to read data on disk in any order

* usually survives power failures and system crashes (disk failure can
occur, but less frequently)

We focus on disk storage!

ECS-165A

Types of Physical Storage

* Optical Storage
— non volatile
— e.g., CD-ROM, DVD

— write-once-read-many optical disks used for archival storage

* Tape Storage
— non volatile

— used primarily for backup and export (to
recover from disk failures and restore data)

— often used for archival

— tapes are typically much cheaper storage

Components of a Disk

e Platters are always spinning Sp'nd\l‘e

(e.g., 7,200 I"Pm) Tracks (3

Disk head (_,) Sector

* A head reads/writes at =

any one time 4qrf N

.

* TJo read a record:

— position arm (seek) v\

— engage head < >

848 Platters

Arm movement
— wait for data to spin by

— read (transfer data) - <v>
/

Arm assembly
ECS-165A 8

-

: ..-'.'QA:; PETARE
i Y
- e ¢

ECS-165A

Components of a Disk

* Each track is made up of Sp'”d\'?
fixed size sectors Tracks
Disk head (\ _) Sector

* Page size is a multiple

of sector size ,
1nl ~ A
— unit of transfer '

— size depends on system 1T
and configuration

— e.g., 4kb .] '\

Arm movement Platters
* All tracks that you can
reach from one position

of the arm is called a <v>
cylinder (imaginary!) /
) Arm assembly

Cost of Accessing Data on a Disk

* Time to access (read/write) data

seek time = moving arms to position disk head on track

rotational delay = waiting for sector to rotate under head

transfer time = actually moving data to/from disk surface

* Key to lower |/O cost: reduce seek & rotational delays!

— you have to wait for the transfer time, no matter what

* Query cost often measured in number of page 1/Os

— often simplified to assume each page I/O costs the same
— random |/O is more expensive than Sequential 1/O

ECS-165A 12

Memory versus Disk Access Time

* Lets say disk access time (all three costs together) is
about 5 milliseconds (ms) ... and memory access
time is about 50 nanoseconds (ns)

— 5 ms = 5,000,000 ns

— therefore disk access is 100,000 times slower than
memory access!

* Contrast this with:
— | second (e.g. pick up a piece of paper)

— 100,000 seconds ~ 28 hours (a looooong drive...)

ECS-165A 13

Block (Page) Size vs. Record Size

* The terms “block” and “page” are often used
interchangeably ...

... (e.g., depending on how a DBMS is implemented)

* A block generally refers to a contiguous sequence of
sectors from a single track

— unit of (physical) storage on a disk, and transfer between main
memory and disk

— a pageis a block” in logical memory ... smallest unit of
transfer supported by an OS (virtual memory, paging)

— Pages/blocks range in size (typically around 512b to 8kb)

Block (Page) Size vs. Record Size

* A database system seeks to minimize the number of block
transfers between disk and main memory

* Transfer can be reduced by keeping as many blocks as possible
In main memory

— Buffer is the portion of main memory available to store copies of disk
blocks

— Buffer manager is responsible for allocating and managing buffer space

* If possible, store file blocks sequentially:
— Consecutive blocks on same track, followed by
— Consecutive tracks on same cylinder, followed by
— Consecutive cylinders adjacent to each other

— First two incur no seek time or rotational delay, seek for third is only
one track

ECS-165A 15

Buffer Manager

* Program calls buffer manager when it needs blocks
from disk

— the program is given the address of the block in main
memory, if it is already in the buffer

— if block not in buffer, the buffer manager adds it ...

* Replaces (throws out) other blocks to make space

 The thrown out block is written back to the disk if it was modified
(since last write to disk)

* Once space is allocated, the buffer manager reads in the block
from disk to the buffer and returns the address

Buffer Replacement Policies

* Operating systems often replace the block least recently
used (LRU strategy)

— In LRU, past (use) is a predictor of future (use)

* Alternatively, queries have well-defined access patterns
(e.g., sequential scans)

— A database system can exploit user queries to predict block
accesses

— LRU can be an inefficient strategy for certain access patterns
that involve (e.g., repeated) sequential scans

— The query optimizer can provide hints on replacement
strategies

ECS-165A

17

Buffer Replacement Policies

Pinned block = not allowed to be written back to disk

* Most recently used (MRU) strategy

— Pin the block currently being processed

— After final tuple of that block processed, the block is
unpinned and becomes the most recently used block

— Keeps older blocks around longer (good for scan problem)

* Buffer manager can use statistics regarding the
probability that a request will reference a particular

relation

File Organization

A database can be stored as a collection of files

* Record-oriented storage
— Each file is a sequence of records
— Each record is a sequence of fields
* Typical organization of records in files

— Assume the record size is fixed (not always the case ...)
— Each file has records of one particular type only

— ... different files used for different relations

File

Record1l | Record2 | ... | Recordn | Record1l | Record2 | ... | Recordn
Header

\ J |

\ Block 1 Block 2

File

File Organization

* We also will draw blocks like this:

<vl, v2, ..., vn>

<vl, v2, ..., vn>

Block 1 <vl, v2, ..., vn>

<vl, v2, ..., vn>

<vl, v2, ..., vn>

<vl, v2, ..., vn>

<vl, v2, ..., vn>

Block 2 <vl, v2, ..., vn>

<vl, v2, ..., vn>

<vl, v2, ..., vn>

ECS-165A

Fixed-Length Records

* Simple approach

— Store record i starting at byte n * (i — 1), where n is the
size of each (fixed-length) record

— Record access is simple, but records may span blocks

* Deletion of record i (to avoid fragmentation)
— Move (shift) recordsi+ 1, ...,ntoi,...,n—1
— Move record n to i

— Maintain positions of free records in a free list

Fixed-Length Records

Free Lists

— In the file header, store the address of the first record
whose content is deleted

— Use this first record to store the address of the second
available record, and so on

— These stored addresses act as “pointers” ... they “point”
to the location of a record (like a linked list)

— Tricky to get right (often the case with pointers)

Variable-Length Records

* Variable-length records are often needed

— for record types that allow a variable length for one or more
fields (e.g., varchar)

— if a file is used to store more than one relation

Approaches for storing variable length records

* End-of-record markers
— Fields “packed” together
— Difficult to reuse space of deleted records (fragmentation)
— No space for record to grow (e.g., due to an update)

— ... in this case, must move the record

Variable-Length Records

* Field delimiters
— Requires scan of record to get to n-th field value

— Requires a field for a NULL value

Fieldl |$| Field2 $ Field3 $ Field4 $

* Each record as an array of field offsets
— For overhead of the offset, we get direct access to any field

— NULL values represented by assigning begin and end
pointers of a field to the same address

Fieldl Field2 Field3 Field4

Variable-Length Records

* Can cause problems when attributes are modified
— growth of a field requires shifting all other fields
— a modified record may no longer fit into the block

— a (large) record can span multiple blocks

* Block headers
— maintain pointers to records
— contain pointers to free space area
— records inserted from end of the block

— records can be moved around to keep them contiguous
Block Header

< —<= >

Size #Entries

...... Free Space R4 R3 R2 R1

Location

ECS-165A 25

Organization of Records within a File

* Requirements: must efficiently support
— insert/delete/update of a record
— access to a record (typical using rid)

— scan of all records

* Heap File (unsorted file)
— Simplest file structure
— Records are unordered

— Record can be placed anywhere in the file where there is space

* Sequential File

— Records are ordered according to a search key

e (Clustered Index

— related to seqential files, we’ll discuss in Section 7
ECS-165A

26

Heap File Organization

* At DB runtime, pages/blocks are allocated and deallocated

* Information to maintain for a heap file includes pages, free
space on pages, records on a page

* A typical implementation is based on two doubly-linked lists
of pages, starting with a header block

* Two lists can be associated with header block: (1) full page
list,and (2) list of pages having free space

Sequential File Organization

* Suitable for applications that require sequential processing of
the entire file

* Records in file are ordered by a search key
* Deletions of records managed using pointer chains

* Insertions: must locate the position in the file where the
record is to be inserted
— if there is free space, insert record there
— if no free space, insert record in an overflow block

— in either case, pointer chain must be updated

* If many record modifications (esp. insertions and deletions),
correspondence between search key order and physical order
can be totally lost => file reorganization

