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8. Query Processing

Goals: Understand the basic concepts underlying the steps in

query processing and optimization and estimating query processing

cost; apply query optimization techniques;

Contents:

• Overview

• Catalog Information for Cost Estimation

• Measures of Query Cost

• Selection

• Join Operations

• Other Operations

• Evaluation and Transformation of Expressions

Query Processing & Optimization

Task: Find an efficient physical query plan (aka execution plan)

for an SQL query

Goal: Minimize the evaluation time for the query, i.e., compute

query result as fast as possible

Cost Factors: Disk accesses, read/write operations, [I/O, page

transfer] (CPU time is typically ignored)
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Basic Steps in Processing an SQL Query

(System Catalogs)

SQL Query Relational Algebra
Expression

Optimizer

Statistics

Execution PlanEvaluation EngineQuery Result

Data Files

Parser &
Translator

• Parsing and Translating

– Translate the query into its internal form (parse tree).

This is then translated into an expression of the relational

algebra.

– Parser checks syntax, validates relations, attributes and

access permissions

• Evaluation

– The query execution engine takes a physical query plan

(aka execution plan), executes the plan, and returns the

result.

• Optimization: Find the “cheapest” execution plan for a query
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• A relational algebra expression may have many equivalent

expressions, e.g.,

πCName(σPrice>5000((CUSTOMERS 1 ORDERS) 1 OFFERS))

πCName((CUSTOMERS 1 ORDERS) 1 (σPrice>5000(OFFERS)))

Representation as logical query plan (a tree):

o

o

CName

Price > 5000 CName

Price > 5000

CUSTOMERS ORDERS OFFERSORDERS

OFFERS

CUSTOMERS

Non-leaf nodes ≡ operations of relational algebra (with

parameters); Leaf nodes ≡ relations

• A relational algebra expression can be evaluated in many

ways. An annotated expression specifying detailed evaluation

strategy is called the execution plan (includes, e.g., whether

index is used, join algorithms, . . . )

• Among all semantically equivalent expressions, the one with

the least costly evaluation plan is chosen. Cost estimate of a

plan is based on statistical information in the system catalogs.
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Catalog Information for Cost Estimation

Information about relations and attributes:

• NR: number of tuples in the relation R.

• BR: number of blocks that contain tuples of the relation R.

• SR: size of a tuple of R.

• FR: blocking factor; number of tuples from R that fit into one

block (FR = dNR/BRe)
• V(A, R): number of distinct values for attribute A in R.

• SC(A, R): selectivity of attribute A
≡ average number of tuples of R that satisfy an

equality condition on A.

SC(A, R) = NR/V(A, R).

Information about indexes:

• HTI: number of levels in index I (B+-tree).

• LBI: number of blocks occupied by leaf nodes in index I
(first-level blocks).

• ValI: number of distinct values for the search key.

Some relevant tables in the Oracle system catalogs:

USER TABLES USER TAB COLUMNS USER INDEXES

NUM ROWS NUM DISTINCT BLEVEL
BLOCKS LOW VALUE LEAF BLOCKS
EMPTY BLOCKS HIGH VALUE DISTINCT KEYS
AVG SPACE DENSITY AVG LEAF BLOCKS PER KEY
CHAIN CNT NUM BUCKETS
AVG ROW LEN LAST ANALYZED
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Measures of Query Cost

• There are many possible ways to estimate cost, e.g., based on

disk accesses, CPU time, or communication overhead.

• Disk access is the predominant cost (in terms of time);

relatively easy to estimate; therefore, number of block transfers

from/to disk is typically used as measure.

– Simplifying assumption: each block transfer has the same

cost.

• Cost of algorithm (e.g., for join or selection) depends on

database buffer size; more memory for DB buffer reduces disk

accesses. Thus DB buffer size is a parameter for estimating

cost.

• We refer to the cost estimate of algorithm S as cost(S). We

do not consider cost of writing output to disk.

Selection Operation

σA=a(R) where a is a constant value, A an attribute of R

• File Scan – search algorithms that locate and retrieve records

that satisfy a selection condition

• S1 – Linear search

cost(S1)= BR
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Selection Operation (cont.)

• S2 – Binary search, i.e., the file ordered based on attribute A
(primary index)

cost(S2) = dlog2(BR)e+

‰
SC(A, R)

FR

ı
− 1

– dlog2(BR)e ≡ cost to locate the first tuple using binary

search

– Second term ≡ blocks that contain records satisfying the

selection.

– If A is primary key, then SC(A, R) = 1, hence

cost(S2) = dlog2(BR)e.
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• Example (for Employee DB)

– FEmployee = 10;

V(Deptno, Employee) = 50 (different departments)

– NEmployee = 10, 000 (Relation Employee has 10,000 tuples)

– Assume selection σDeptno=20(Employee) and Employee is

sorted on search key Deptno :

=⇒ 10,000/50 = 200 tuples in Employee belong to

Deptno 20;

(assuming an equal distribution)

200/10 = 20 blocks for these tuples

=⇒ A binary search finding the first block would require

dlog2(1, 000)e = 10 block accesses

Total cost of binary search is 10+20 block accesses (versus

1,000 for linear search and Employee not sorted by Deptno).
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• Index scan – search algorithms that use an index (here, a

B+-tree); selection condition is on search key of index

• S3 – Primary index I for A, A primary key, equality A = a

cost(S3) = HTI + 1 (only 1 tuple satisfies condition)

• S4 – Primary index I on non-key A equality A = a

cost(S4) = HTI +

‰
SC(A, R)

FR

ı
• S5 – Non-primary (non-clustered) index on non-key A,

equality A = a

cost(S5) = HTI + SC(A, R)

Worst case: each matching record resides in a different block.

• Example (Cont.):

– Assume primary (B+-tree) index for attribute Deptno

– 200/10=20 blocks accesses are required to read Employee

tuples

– If B+-tree index stores 20 pointers per (inner) node, then

the B+-tree index must have between 3 and 5 leaf nodes

and the entire tree has a depth of 2

=⇒ a total of 22 blocks must be read.
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Selections Involving Comparisons

• Selections of the form σA≤v(R) or σA≥v(R) are implemented

using a file scan or binary search, or by using either a

– S6 – A primary index on A, or

– S7 – A secondary index on A (in this case, typically a

linear file scan may be cheaper; but this depends on the

selectivity of A)

Complex Selections

• General pattern:

– Conjunction – σΘ1∧...∧Θn(R)

– Disjunction – σΘ1∨...∨Θn(R)

– Negation – σ¬Θ(R)

• The selectivity of a condition Θi is the probability that a tuple

in the relation R satisfies Θi. If si is the number of tuples in

R that satisfy Θi, then Θi’s selectivity is estimated as si/NR.
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Join Operations

• There are several different algorithms that can be used to

implement joins (natural-, equi-, condition-join)

– Nested-Loop Join

– Block Nested-Loop Join

– Index Nested-Loop Join

– Sort-Merge Join

– Hash-Join

• Choice of a particular algorithm is based on cost estimate

• For this, join size estimates are required and in particular

cost estimates for outer-level operations in a relational algebra

expression.

• Example:

Assume the query CUSTOMERS 1 ORDERS (with join

attribute only being CName)

– NCUSTOMERS = 5,000 tuples

– FCUSTOMERS = 20, i.e., BCUSTOMERS = 5,000/20 = 250 blocks

– NORDERS = 10,000 tuples

– FORDERS = 25, i.e., BORDERS = 400 blocks

– V(CName, ORDERS) = 2,500, meaning that in this relation,

on average, each customer has four orders

– Also assume that CName in ORDERS is a foreign key on

CUSTOMERS
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Estimating the Size of Joins

• The Cartesian product R× S results in NR ∗ NS tuples; each

tuple requires SR + SS bytes.

• If schema(R) ∩ schema(S) = primary key for R, then a tuple

of S will match with at most one tuple from R.

Therefore, the number of tuples in R1S is not greater than NS

If schema(R) ∩ schema(S) = foreign key in S referencing R,

then the number of tuples in R1S is exactly NS.

Other cases are symmetric.

• In the example query CUSTOMERS 1 ORDERS, CName in

ORDERS is a foreign key of CUSTOMERS; the result thus

has exactly NORDERS = 10,000 tuples

• If schema(R) ∩ schema(S) = {A} is not a key for R or S;

assume that every tuple in R produces tuples in R 1 S. Then

the number of tuples in R 1 S is estimated to be:
NR ∗ NS
V(A, S)

If the reverse is true, the estimate is
NR ∗ NS
V(A, R)

and the lower of the two estimates is probably the more

accurate one.
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• Size estimates for CUSTOMERS 1 ORDERS without using

information about foreign keys:

– V(CName, CUSTOMERS) = 5,000, and

V(CName, ORDERS) = 2,500

– The two estimates are 5,000*10,000/2,500=20,000 and

5,000*10,000/5,000=10,000.

• We choose the lower estimate, which, in this case, is the same

as our earlier computation using foreign key information.
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Nested-Loop Join

• Evaluate the condition join R 1C S

• for each tuple tR in R do begin
for each tuple tS in S do begin

check whether pair (tR, tS) satisfies join condition

if they do, add tR ◦ tS to the result

end
end

• R is called the outer and S the inner relation of the join.

• Requires no indexes and can be used with any kind of join

condition.

• Worst case: db buffer can only hold one block of each relation

=⇒ BR + NR ∗ BS disk accesses

• Best case: both relations fit into db buffer

=⇒ BR + BS disk accesses.
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An Improvement: Block Nested-Loop Join

• Evaluate the condition join R 1C S

• for each block BR of R do begin
for each block BS of S do begin

for each tuple tR in BR do
for each tuple tS in BS do

check whether pair (tR, tS)

satisfies join condition

if they do, add tR ◦ tS to the result

end end end end

• Also requires no indexes and can be used with any kind of join

condition.

• Worst case: db buffer can only hold one block of each relation

=⇒ BR + BR ∗ BS disk accesses.

• Best case: both relations fit into db buffer

=⇒ BR + BS disk accesses.

• If smaller relation completely fits into db buffer, use that as

inner relation. Reduces the cost estimate to BR + BS disk

accesses.
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Block Nested-Loop Join (cont.)

• Some improvements of block nested-loop algorithm

– If equi-join attribute is the key on inner relation, stop inner

loop with first match

– Use M − 2 disk blocks as blocking unit for outer relation,

where M = db buffer size in blocks; use remaining two

blocks to buffer inner relation and output.

Reduces number of scans of inner relation greatly.

– Scan inner loop forward and backward alternately, to make

use of blocks remaining in buffer (with LRU replacement

strategy)

– Use index on inner relation, if available . . .
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Index Nested-Loop Join

• If an index is available on the inner loop’s join attribute and

join is an equi-join or natural join, more efficient index lookups

can replace file scans.

• It is even possible (reasonable) to construct index just to

compute a join.

• For each tuple tR in the outer relation R, use the index to

lookup tuples in S that satisfy join condition with tR

• Worst case: db buffer has space for only one page of R and

one page of the index associated with S:

– BR disk accesses to read R, and for each tuple in R, perform

index lookup on S.

– Cost of the join: BR + NR ∗ c, where c is the cost of a

single selection on S using the join condition.

• If indexes are available on both R and S, use the one with the

fewer tuples as the outer relation.
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• Example:

– Compute CUSTOMERS 1 ORDERS, with CUSTOMERS

as the outer relation.

– Let ORDERS have a primary B+-tree index on the join-

attribute CName, which contains 20 entries per index node

– Since ORDERS has 10,000 tuples, the height of the tree is

4, and one more access is needed to find the actual data

records (based on tuple identifier).

– Since NCUSTOMERS is 5,000, the total cost is 250 + 5000 ∗ 5

= 25,250 disk accesses.

– This cost is lower than the 100,250 accesses needed for a

block nested-loop join.
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Sort-Merge Join

• Basic idea: first sort both relations on join attribute (if not

already sorted this way)

• Join steps are similar to the merge stage in the external

sort-merge algorithm (discussed later)

• Every pair with same value on join attribute must be matched.

1 1
2 2
2 3
3 3
4 5
5

Relation SRelation R

values of join attributes

• If no repeated join attribute values, each tuple needs to be

read only once. As a result, each block is read only once.

Thus, the number of block accesses is BR + BS (plus the cost

of sorting, if relations are unsorted).

• Worst case: all join attribute values are the same. Then the

number of block accesses is BR + BR ∗ BS.

• If one relation is sorted and the other has a secondary B+-tree

index on the join attribute, a hybrid merge-join is possible.

The sorted relation is merged with the leaf node entries of

the B+-tree. The result is sorted on the addresses (rids) of

the unsorted relation’s tuples, and then the addresses can be

replaced by the actual tuples efficiently.
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Hash-Join

– only applicable in case of equi-join or natural join

– a hash function is used to partition tuples of both relations into

sets that have the same hash value on the join attribute

Partitioning Phase: 2 ∗ (BR + BS) block accesses

Matching Phase: BR + BS block accesses

(under the assumption that one partition of each relation fits into

the database buffer)

Cost Estimates for other Operations

Sorting:

• If whole relation fits into db buffer ; quick-sort

• Or, build index on the relation, and use index to read relation

in sorted order.

• Relation that does not fit into db buffer ; external sort-merge

1. Phase: Create runs by sorting portions of the relation

in db buffer

2. Phase: Read runs from disk and merge runs in sort order
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Duplicate Elimination:

• Sorting: remove all but one copy of tuples having identical

value(s) on projection attribute(s)

• Hashing: partition relation using hash function on projection

attribute(s); then read partitions into buffer and

create in-memory hash index; tuple is only inserted

into index if not already present

Set Operations:

• Sorting or hashing

• Hashing: Partition both relations using the same hash

function; use in-memory index for partitions Ri
R ∪ S: if tuple in Ri or in Si, add tuple to result

∩: if tuple in Ri and in Si, . . .

−: if tuple in Ri and not in Si, . . .

Grouping and aggregation:

• Compute groups via sorting or hashing.

• Hashing: while groups (partitions) are built, compute

partial aggregate values (for group attribute

A, V(A,R) tuples to store values)
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Evaluation of Expressions

• Strategy 1: materialization. Evaluate one operation at a

time, starting at the lowest level. Use intermediate results

materialized in temporary relations to evaluate next level

operation(s).

o Price > 5000

CName

CUSTOMERS ORDERS OFFERS

• First compute and store σPrice>5000(OFFERS); then compute

and store join of CUSTOMERS and ORDERS; finally, join the

two materialized relations and project on to CName.

• Strategy 2: pipelining. evaluate several operations

simultaneously, and pass the result (tuple- or block-wise)

on to the next operation.

In the example above, once a tuple from OFFERS satisfying

selection condition has been found, pass it on to the join.

Similarly, don’t store result of (final) join, but pass tuples

directly to projection.

• Much cheaper than materialization, because temporary

relations are not generated and stored on disk.
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Evaluation of Expressions (cont.)

• Pipelining is not always possible, e.g., for all operations that

include sorting (blocking operation).

• Pipelining can be executed in either demand driven or producer

driven fashion.
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Transformation of Relational Expressions

• Generating a query-evaluation plan for an expression of the

relational algebra involves two steps:

1. generate logically equivalent expressions

2. annotate these evaluation plans by specific algorithms and

access structures to get alternative query plans

• Use equivalence rules to transform a relational algebra

expression into an equivalent one.

• Based on estimated cost, the most cost-effective annotated

plan is selected for evaluation. The process is called cost-based

query optimization.

Equivalence of Expressions

Result relations generated by two equivalent relational algebra

expressions have the same set of attributes and contain the same

set of tuples, although their attributes may be ordered differently.
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Equivalence Rules (for expressions E, E1, E2, conditions Fi)

Applying distribution and commutativity of relational algebra

operations

1. σF1(σF2(E)) ≡ σF1∧F2(E)

2. σF(E1 [∪,∩,−] E2) ≡ σF(E1) [∪,∩,−] σF(E2)

3. σF(E1 × E2) ≡ σF0(σF1(E1)× σF2(E2));

F ≡ F0 ∧ F1 ∧ F2, Fi contains only attributes of Ei, i = 1, 2.

4. σA=B(E1 × E2) ≡ E1 1
A=B

E2

5. πA(E1 [∪,∩,−] E2) 6≡ πA(E1) [∪,∩,−] πA(E2)

6. πA(E1 × E2) ≡ πA1(E1) × πA2(E2),

with Ai = A ∩ { attributes in Ei}, i = 1, 2.

7. E1 [∪,∩] E2 ≡ E2 [∪,∩] E1

(E1 ∪ E2) ∪ E3 ≡ E1 ∪ (E2 ∪ E3) (the analogous holds for ∩)

8. E1 × E2 ≡ πA1,A2(E2 × E1)

(E1 × E2)× E3 ≡ E1 × (E2 × E3)

(E1 × E2)× E3 ≡ π((E1 × E3)× E2)

9. E1 1 E2 ≡ E2 1 E1 (E1 1 E2) 1 E3 ≡ E1 1 (E2 1 E3)

The application of equivalence rules to a relational algebra

expression is also sometimes called algebraic optimization.
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Examples:

• Selection:

– Find the name of all customers who have ordered a product

for more than $5,000 from a supplier located in Davis.

πCName(σSAddress like ′%Davis%′ ∧ Price>5000

(CUSTOMERS 1 (ORDERS 1 (OFFERS 1 SUPPLIERS))))

Perform selection as early as possible (but take existing

indexes on relations into account)

πCName(CUSTOMERS 1 (ORDERS 1

(σPrice>5000(OFFERS) 1 (σSAddress like ′%Davis%′(SUPPLIERS)))))

• Projection:

– πCName,account(CUSTOMERS 1 σProdname=′CD−ROM′(ORDERS))

Reduce the size of argument relation in join

πCName,account(CUSTOMERS 1 πCName(σProdname=′CD−ROM′(ORDERS)))

Projection should not be shifted before selections, because

minimizing the number of tuples in general leads to more

efficient plans than reducing the size of tuples.
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Join Ordering

• For relations R1, R2, R3,

(R1 1 R2) 1 R3 ≡ R1 1 (R2 1 R3)

• If (R2 1 R3) is quite large and (R1 1 R2) is small, we choose

(R1 1 R2) 1 R3

so that a smaller temporary relation is computed and

materialized

• Example: List the name of all customers who have ordered a

product from a supplier located in Davis.

πCName(σSAddress like ′%Davis%′

(SUPPLIERS 1 ORDERS 1 CUSTOMERS))

ORDERS 1 CUSTOMERS is likely to be a large relation. Because

it is likely that only a small fraction of suppliers are from

Davis, we compute the join

σSAddress like ′%Davis%′(SUPPLIERS 1 ORDERS)

first.

Summary of Algebraic Optimization Rules

1. Perform selection as early as possible

2. Replace Cartesian Product by join whenever possible

3. Project out useless attributes early.

4. If there are several joins, perform most restrictive join first
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Evaluation Plan

An evaluation plan for a query exactly defines what algorithm is

used for each operation, which access structures are used (tables,

indexes, clusters), and how the execution of the operations is

coordinated.

Example of Annotated Evaluation Plan

• Query: List the name of all customers who have ordered a

product that costs more than $5,000.

Assume that for both CUSTOMERS and ORDERS an index on

CName exists: I1(CName, CUSTOMERS), I2(CName, ORDERS).

o
index−nested loop join

block nested−loop join

I (CName, ORDERS) ORDERS

Price > 5000

I (CName, CUSTOMERS)1 2

CName (sort to remove duplicates)

2

pipeline pipeline

get tuples for tids of I

full table scan
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Choice of an Evaluation Plan

• Must consider interaction of evaluation techniques when

choosing evaluation plan: choosing the algorithm with the

least cost for each operation independently may not yield the

best overall algorithm.

• Practical query optimizers incorporate elements of the

following two optimization approaches:

– Cost-based: enumerate all the plans and choose the best

plan in a cost-based fashion.

– Rule-based: Use rules (heuristics) to choose plan.

• Remarks on cost-based optimization:

– Finding a join order for R1 1 R2 1 . . . 1 Rn:

n! different left-deep join orders

∗ For example, for n = 9, the number is 362880.

; use of dynamic programming techniques

• Heuristic (or rule-based) optimization transforms a given query

tree by using a set of rules that typically (but not in all cases)

improve execution performance:

– Perform selection early (reduces number of tuples)

– Perform projection early (reduces number of attributes)

– Perform most restrictive selection and join operations before

other similar operations.
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