
ECS-165A WQ’11 66

4. SQL

Contents

• Basic Queries in SQL (select statement)

• Set Operations on Relations

• Nested Queries

• Null Values

• Aggregate Functions and Grouping

• Data Definition Language Constructs

• Insert, Update, and Delete Statements

• Views (Virtual Tables)

Example Database

CUSTOMERS(FName, LName, CAddress, Account)

PRODUCTS(Prodname, Category)

SUPPLIERS(SName, SAddress, Chain)

orders((FName, LName) → CUSTOMERS, SName → SUPPLIERS,

Prodname → PRODUCTS, Quantity)

offers(SName → SUPPLIERS, Prodname → PRODUCTS, Price)

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 67

Basic Structure

• SQL is based on set and relational operations with certain

modifications and enhancements.

In this course we focus on SQL (≈ SQL Standard) but also

do some PostgreSQL specifics later

• A typical SQL query has the form

select A1, A2, . . . , An

from r1, r2, . . . , rk
where P

– Ais represent attributes

– ris represent relations

– P is a predicate

• This query is equivalent to the relational algebra expression

πA1,A2,...,An
(σP (r1 × r2 × . . .× rk))

• The result of an SQL query is a relation (set of tuples) with a

schema defined through the attributes Ais.

• The select clause corresponds to the projection operation of

the relational algebra; it is used to list the attributes to be

output in a query result.

Find the name of all suppliers.

select SName from SUPPLIERS;

→ πSName(SUPPLIERS)

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 68

Basic Structure (cont.)

• An asterisk “∗” in the select clause denotes all attributes

select ∗ from SUPPLIERS;

• SQL allows duplicate tuples in a relation as well as in query

results. Duplicates can be removed from query result using

keyword distinct

select distinct Account from CUSTOMERS;

• select clause can contain arithmetic expressions as well as

functions on attributes including attributes and constants.

select substr(SName,1,10) [as] ”Name”, Prodname, Price ∗ 100

from offers;

• The where clause corresponds to the selection operation of

the relational algebra. It consists of a predicate involving

attributes of the relations that appear in the from clause.

List the first and last name of customers having a

negative account.

select FName, LName

from CUSTOMERS

where Account < 0;

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 69

Basic Structure (cont.)

• Logical connectives and, or, and not can be used to formulate

complex condition in where clause.

Which suppliers (SName) offer a MegaPC or a TinyMac?

select SName from offers

where Prodname = ’MegaPC’ or Prodname = ’TinyMac’;

=̂ . . . where Prodname in (’MegaPC’,’TinyMac’)

List the name of products that cost more than $10,000 and

less than $20,000.

select Prodname, Price from offers

where Price >= 10000 and Price <= 20000;

=̂ . . . where Price between 10000 and 20000

• The from clause corresponds to the Cartesian Product of the

relational algebra.

List all customer with the products they can order.

select ∗ from CUSTOMERS, PRODUCTS;

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 70

Basic Structure (cont.)

List all customers who are living in Davis and who have ordered

at least 10 MegaPCs.

select CUSTOMERS.FName, CUSTOMERS.LName, Quantity

from CUSTOMERS, orders

where CAddress like ’%Davis%’

and CUSTOMERS.FName = orders.FName

and CUSTOMERS.LName = orders.LName

and Prodname = ’MegaPC’ and Quantity > 10;

πCUSTOMERS.FName, CUSTOMERS.LName, Quantity

(σCAddress like ’%Davis% ∧ Quantity>10 ∧ Prodname=’MegaPC’

(σCUSTOMERS.FName=orders.FName ∧ CUSTOMERS.LName=orders.LName

(CUSTOMERS× orders)))

Replace the last selection condition σ... by a natural join

(CUSTOMERS 1 orders)

List the name and address of suppliers that offer products.

Remove duplicates from the result and list the result ordered

by the supplier’s address.

select distinct SUPPLIERS.SName, SAddress

from SUPPLIERS, offers

where SUPPLIERS.SName = offers.SName

order by SAddress;

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 71

Basic Structure (cont.)

• Using the rename operator (aliasing)

select distinct S.SName, SAddress

from SUPPLIERS S, offers O

where S.SName = O.SName;

List all information about customers together with information

about the suppliers they have ordered products from.

select C.∗, S.∗, O.∗
from CUSTOMERS C, orders O, SUPPLIERS S

where C.LName = O.LName and C.FName = O.FName

and O.SName=S.SName;

Equivalent expression in relational algebra:

((CUSTOMERS 1 orders) 1 SUPPLIERS)

List the name of customers who have an account greater or

equal than (some) other customers.

select C1.FName, C1.LName

from CUSTOMERS C1, CUSTOMERS C2

where (C1.FName <> C2.FName or
C1.LName <> C2.LName)

and C1.Account >= C2.Account;

+ query realizes a condition join!

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 72

Set Operations

• The Oracle/SQL set operations union, minus (except), and

intersect correspond to the relational algebra operations

∪,−, and ∩.

• Each of the above operations automatically eliminates

duplicates. To retain duplicates for the union operator, one

has to use the corresponding multiset version union all.

• Examples:

Find all suppliers that offer a MegaPC or TinyMac.

(select SName from offers where Prodname = ’MegaPC’)

union
(select SName from offers where Prodname = ’TinyMac’);

Find all suppliers that offer both a MegaPC and a TinyMac.

(select SName from offers where Prodname = ’MegaPC’)

intersect
(select SName from offers where Prodname = ’TinyMac’);

Find all suppliers that offer a MegaPC but not a TinyMac.

(select SName from offers where Prodname = ’MegaPC’)

minus
(select SName from offers where Prodname = ’TinyMac’);

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 73

Nested Subqueries

• So far, where clauses in examples only consist of simple

attribute and/or constant comparisons.

• SQL provides language constructs for the nesting of queries

using subqueries. A subquery is a select-from-where
expression that is nested within another query.

• Most common use of subqueries is to perform tests for set

membership, set comparisons, and set cardinality.

• Set valued subqueries in a where condition:

– <expression> [not] in (<subquery>)

– <expression> <comparison operator> any (<subquery>)

– <expression> <comparison operator> all (<subquery>)

• Set cardinality or test for (non-)existence:

– [not] exists (<subquery>)

• Subqueries in a where clause can be combined arbitrarily using

logical connectives.

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 74

Examples of Set Valued Subqueries

• Give the name and chain of all suppliers located in Davis that

offer a MegaPC for less than $1,000.

select SName, Chain

from SUPPLIERS

where SName in (select SName from offers

where Prodname = ’MegaPC’

and Price < 1000)

and SAddress like ’%Davis%’;

+ This query can also be formulated using a join!

• Give the name and address of suppliers that don’t offer a

MegaPC.

select SName, SAddress

from SUPPLIERS

where SName not in (select SName from offers

where Prodname = ”MegaPC’);

+ If it is know that a subquery returns at most one value,

then one can use “=” instead of in.

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 75

• Find the name and address of customers who have ordered a

product from Davis Lumber.

select ∗ from CUSTOMERS

where (FName, LName) in (select FName, LName

from orders

where SName = ’Davis Lumber’);

• Find all customers from Woodland who have an account

greater than any (some) customer in Davis.

select ∗ from CUSTOMERS

where Account > any (select Account

from CUSTOMERS

where CAddress like’%Davis%’)

and CAddress like ’%Woodland%’;

• Find customers who have ordered more than one MegaPC

from a supplier.

select ∗ from CUSTOMERS

where (FName, LName) = any
(select FName, LName

from orders

where Prodname = ’MegaPC’

and Quantity > 1);

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 76

+ Note that = any is equivalent to in .

• List all customers who have an account greater than all

customers from Davis.

select ∗ from CUSTOMERS

where Account > all
(select Account from CUSTOMERS

where CAddress like’%Davis%’);

+ Note that <> all or != all is equivalent to not in .

• Give all suppliers (SName) who offer at least one product

cheaper than all other suppliers.

select SName from offers O1

where Price < all (select Price

from offers O2

where O1.Prodname = O2.Prodname

and O1.SName<> O2.SName);

• If a subquery refers to attributes of an outer query, the

subquery is called a correlated subquery. References to outer

relations and attributes typically occur through using aliases.

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 77

Test for (non-)existence

• List all customers who have ordered a product from a supplier

in Davis.

select ∗ from CUSTOMERS C

where exists (select ∗
from orders O, SUPPLIERS S

where O.SName = S.SName

and O.FName = C.FName

and O.LName = C.LName

and SAddress like ’%Davis%’);

This query can also be formulated using a natural join

select distinct C.∗
from CUSTOMERS C, orders O, SUPPLIERS S

where O.SName = S.SName

and O.FName = C.FName and O.LName = C.LName

and SAddress like ’%Davis%’;

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 78

• Give all products (Prodname, Category) for which no offer

exists.

select * from PRODUCTS P

where not exists (select ∗ from offers

where P.Prodname = Prodname);

+ attributes without preceding alias refer to relations listed in

the from
clause of the subquery where the attributes occur.

• Find all suppliers that offer a MegaPC, but no TinyMac.

select ∗ from SUPPLIERS S

where exists (select ∗ from offers

where SName=S.SName

and Prodname=’MegaPC’)

and not exists (select ∗ from offers

where SName=S.SName

and Prodname=’TinyMac’);

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 79

Examples (cont.)

• Give all pairs of suppliers that offer exactly the same products.

select distinct O1.SName, O2.SName
from offers O1, offers O2
where O1.SName < O2.SName

and not exists
(((select Prodname

from offers

where SName = O1.SName)

minus
(select Prodname
from offers
where SName = O2.SName)

)

union
((select Prodname

from offers

where SName = O2.SName)

minus
(select Prodname

from offers

where SName = O1.SName)

))

order by O1.SName, O2.SName;

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 80

Null Values

• If permitted by the schema definition for a table (i.e., no not
null constraints), attributes can have null values.

• null =̂ unknown, non-existent, or non-applicable value

• Result of any arithmetic expression involving null is null

• Result of where clause condition is false if it evaluates to null.

and true false null

true true false null

null null false null

false false false false

or true false null

true true true true

null true null null

false true false null

not

true false

null null

false true

• Give all suppliers that are not associated with a chain.

select ∗ from SUPPLIERS where Chain is null;

List all customers who have a known account.

select ∗ from CUSTOMERS where Account is not null;

• All aggregate functions except count(∗) ignore tuples with

null values on the aggregate attribute(s).

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 81

Aggregate Functions

• Aggregate functions operate on a multiset of values and return

a single value. Typical aggregate functions are min, max,
sum, count, and avg.

• For aggregate functions (and the following grouping), an

extension of relational algebra exists.

• Examples:

What is the total number of suppliers?

select count(SName) from SUPPLIERS;

How many different products are offered?

select count(distinct Prodname) from offers;

What is the minimum and maximum price for products

offered by Davis Lumber?

select min(Price), max(Price) from offers

where SName = ’Davis Lumber’;

What is the average price for a MegaPC?

select avg(Price) from offers

where Prodname = ’MegaPC’;

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 82

Aggregate Functions (cont.)

What is the total price for the products ordered by the

customer Scott Tiger?

select sum(Price * Quantity)

from CUSTOMERS C, orders O, offers F

where C.FName=O.FName and C.LName = O.LName

and O.Prodname = F.Prodname

and O.SName = F.SName

and C.FName = ’Scott’ and C.LName = ’Tiger’;

Grouping

• Idea: Group tuples that have the same properties into groups,

and apply aggregate function to each group. Optionally,

consider only groups for the query result that satisfy a certain

group condition.

• Syntax in SQL:

select <attribute(s) [with aggregate function]>

from R1, R2, . . . , Rm

[where P]

group by <grouping attribute(s)>

[having <condition on group>];

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 83

Grouping

• Examples:

For each supplier, list the name of the supplier and the total

number of products the supplier offers.

select SName, count(Prodname)

from offers

group by SName;

For each customer, list the total quantity of orders.

select FName, LName, sum(Quantity)

from orders

group by FName, LName;

Note: attributes that appear in the select clause outside of

an aggregate function must appear in the group by clause !

List products that are offered by more than one supplier,

together with the minimum and maximum price of these

offers.

select Prodname, min(Price), max(Price)

from offers

group by Prodname

having count(∗) > 1;

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 84

Grouping (cont.)

• A query containing a group by clause is processed in the

following way:

1. Select all rows that satisfy the condition specified in the

where clause.

2. From these rows form groups according to the group by
clause.

3. Discard all groups that do not satisfy the condition in the

having clause.

4. Apply aggregate function(s) to each group.

5. Retrieve values for the columns and aggregations listed in

the select clause.

• More examples:

List all suppliers from Davis that offer more than 10 products.

select O.SName, count(Prodname)

from SUPPLIERS S, offers O

where S.SName = O.SName and SAddress like ’%Davis%’

group by O.SName

having count(Prodname) > 10;

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 85

Grouping (cont.)

• List the names of customers who have ordered products for

more than $10,000.

select C.FName, C.LName, sum(Quantity∗Price)

from CUSTOMERS C, orders O, offers F

where C.FName=O.FName and C.LName = O.LName

and O.Prodname = F.Prodname

and O.SName = F.SName

group by C.FName, C.LName

having sum(Quantity*Price) > 10000;

What is the minimum total quantity of all orders for a product?

select min(sum(Quantity))

from orders

group by Prodname;

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 86

Data Definition Language (DDL)

Allows the specification of not only a set of relations but also

information about each relation, including

• The schema of a relation

• The domain of attributes

• Integrity constraints

• The set of indexes associated with a relation (later)

• The physical storage structure of a relation (later)

Data Types in SQL

• char(n), varchar2(n) (in SQL standard only varchar(n))

• number(m,n), real, int, smallint, . . .

• long, date

Creating a Table

• Syntax:

create table <name> (

<attribute 1> <data type> [not null] [unique]

[<attribute constraint>],

.

<attribute n> <data type> [not null] [unique]

[<attribute constraint>],

[<table constraint(s)>]

);

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 87

Integrity Constraints

• not null (do not allow null values)

• primary key <attribute> (as attribute constraint)

primary key (<list of attributes>) (as table constraint)

• unique <attribute> (as attribute constraint)

unique (<list of attributes>) (as table constraint)

• check <condition>

If <condition> only refers to one attribute

→ attribute constraint;

if<condition> includes more than one attribute of the relation

→ table constraint;

<condition>must be a simple condition that does not contain

queries or references to other relations!

• Foreign key (or referential integrity) constraints:

references <relation>[.<attribute>]

→ attribute constraint

foreign key<attributes> references<relation>[.<attributes>]

→ table constraint

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 88

• Example

create table Students (

StID number(9) constraint Students pk primary key,

FName varchar2(50) not null,
LName varchar2(50) not null,
DOB date constraint dob check

check(DOB is not null
and to char(DOB) > ’01-JAN-01’),

Major char(5) constraint fk majors references Majors,

ZipCode integer constraint check zip

check(ZipCode is not null and
ZipCode between 1 and 99999),

City varchar2(50),

Street varchar2(50),

Started date not null,
constraint dates check check(DOB < Started),

constraint name add unique(FName, LName, DOB)

);

• As usual, different database systems (PostgreSQL, Oracle,

etc.) can differ in syntax and capabilities (cf. reference

manual).

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 89

Modifications of the Database

I. Deletions:

• Syntax: delete from <relation> [where <condition>];

• Examples:

Delete all suppliers that don’t offer any product.

delete from SUPPLIERS

where SName not in (select SName from offers);

Delete all customers having an account less than the average

account of all customers.

delete from CUSTOMERS

where Account < (select avg(Account)

from CUSTOMERS);

Problem: Evaluating the condition after each deletion of

a customer tuple leads to a change of the

subquery result.

In SQL: First compute avg(Account) and identify tuples

from CUSTOMERS to delete; then delete those tuples

without recomputing avg(Account).

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 90

II. Insertions

• Add the customer Scott Tiger (who is living in Davis).

insert into CUSTOMERS

values(’Scott’,’Tiger’,’Davis’,null);

=̂ insert into CUSTOMERS(FName, LName, CAddress,

Account)

values(’Scott’,’Tiger’,’Davis’,null);

or insert into CUSTOMERS(FName, LName, CAddress)

values(’Scott’,’Tiger’,’Davis’);

All suppliers are also customers.

insert into CUSTOMERS(FName, LName, CAddress, Account)

select ’-’, SName, SAddress, 0 from SUPPLIERS;

III. Updates

• Increase the Account of the customer Scott Tiger by $5,000,

and change his address to Woodland.

update CUSTOMERS

set Account = Account+5000, CAddress = ’Woodland’

where LName=’Tiger’ and FName=’Scott’;

• Set Clark Kent’s account to the account of Scott Tiger.

update CUSTOMERS

set Account = (select Account from CUSTOMERS

where LName=’Tiger’ and FName=’Scott’)

where FName=’Clark’ and LName=’Kent’;

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 91

Views

• Offer a flexible mechanism to hide certain data from the view

of a certain user or application; used to realize external schema

definitions in the three level schema architecture

• Syntax of a view definition:

create view <name>[(<list of attribute names>)]

as <query>;

• The result set of a view is materialized only when the view is

queried⇒ only the definition of a view requires space

• Examples:

create view PC SUPPLS as
select SName, SAddress, Chain

from SUPPLIERS S

where exists (select ∗ from offers

where SName = S.SName

and Prodname = ’MegaPC’);

create view GOOD CUSTS(CName, CFName) as
select LName, FName

from CUSTOMERS C

where 10000 < (select sum(Price ∗ Quantity)

from orders O, offers R

where O.SName=R.SName

and O.FName=C.FName

and O.LName=C.LName

and O.Prodname=R.Prodname) ;

Dept. of Computer Science UC Davis 4. SQL

ECS-165A WQ’11 92

Modifications of a View

• Consider the view

CUST ORDERS(FName, LName, Prodname, SName,

Quantity)

defined as

select C.FName, C.LName, Prodname, SName, Quantity

from CUSTOMERS C, orders O

where C.FName=O.FName and C.LName=O.LName;

• View Update Problem: Insert, delete, and update operations

on a view must be translated into respective operations of the

underlying relations.

+ No problem if there is only one relation underlying the view

definition.

Delete the customer Scott Tiger from CUST ORDERS.

Possibility A: delete Scott Tiger from CUSTOMERS

Possibility B: delete Scott Tiger from orders

• Rules: In Oracle SQL no insert, update, or delete
modifications on views are allowed that use one of the following

constructs in the view definition:

– Joins

– Aggregate function such as sum, min, max etc.

– set-valued subqueries (in, any, all) or test for existence

(exists)

– group by clause or distinct clause

Dept. of Computer Science UC Davis 4. SQL

