
Announcements & Overview  

•  Midterm results:  Wednesday	


•  HW3 due Wednesday @ 11:59pm	


•  Start on Database Internals:  Data Storage on Disk	


–  Warning:  broad overview … “typical” cases, generalities	


–  Many of these topics covered in more depth in 165B	


•  Reading	


–  Chapter 13	
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Basic Database Architecture 
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10,000 Foot View of Query Optimization 

•  Given an SQL query	

•  Translate it into relational algebra	

•  Find equivalent query plans 	


–  different ways to order operators	

–  different ways to implement each operator	


•  Pick a cheap plan (per estimated cost)	

•  Execute the plan … 	


How are operators implemented? 	

How is data stored on disk?	
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The Plan 
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Types of Physical Storage 

•  Cache	

–  fastest and most costly form of storage	

–  volatile … content lost if power failure, system crash, etc.	

–  managed by the hardware and/or operating system	


•  Main memory	

–  fast access 	

–  in most applications, too small to store ���

an entire DB 	

–  Volatile	

	

Note:  many “main memory only” databases are available ���

… and used increasingly for applications with small storage 
requirements and as memory sizes increase	
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Types of Physical Storage 

•  Magnetic (“Hard”) Disk Storage	


–  primary medium for long-term storage of data	


–  typically can store entire database (all relations and access 
structures)	


•  data must be moved from disk to main memory for access and 
written back for storage	


•  direct-access, i.e., it is possible to read data on disk in any order	


•  usually survives power failures and system crashes (disk failure can 
occur, but less frequently)	


We focus on disk storage!	
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Types of Physical Storage 

•  Optical Storage	


–  non volatile	


–  e.g., CD-ROM, DVD	


–  write-once-read-many optical disks used for archival storage	


•  Tape Storage	


–  non volatile	


–  used primarily for backup and export (to ���
recover from disk failures and restore data)	


–  often used for archival	


–  tapes are typically much cheaper storage	
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Components of a Disk 

•  Platters are always spinning 
(e.g., 7,200 rpm)	


•  A head reads/writes at ���
any one time	


•  To read a record:	

–  position arm (seek)	


–  engage head	


–  wait for data to spin by	


–  read (transfer data)	
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Components of a Disk 

•  Each track is made up of 
fixed size sectors	


•  Page size is a multiple ���
of sector size	

–  unit of transfer	

–  size depends on system���

and configuration	

–  e.g., 4kb	


•  All tracks that you can ���
reach from one position���
of the arm is called a ���
cylinder (imaginary!)	
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Cost of Accessing Data on a Disk 

•  Time to access (read/write) data	

seek time = moving arms to position disk head on track	


rotational delay = waiting for sector to rotate under head	


transfer time = actually moving data to/from disk surface	


•  Key to lower I/O cost: reduce seek & rotational delays!	

–  you have to wait for the transfer time, no matter what	


•  Query cost often measured in number of page I/Os	

–  often simplified to assume each page I/O costs the same	


–  random I/O is more expensive than Sequential I/O	
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Memory versus Disk Access Time 

•  Lets say disk access time (all three costs together) is 
about 5 milliseconds (ms) … and memory access 
time is about 50 nanoseconds (ns)	


–  5 ms = 5,000,000 ns	

–  therefore disk access is 100,000 times slower than 

memory access!	


•  Contrast this with: 	

–  1 second (e.g.  pick up a piece of paper) 	


–  100,000 seconds ~ 28 hours (a looooong drive…)	
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Block (Page) Size vs. Record Size 
•  The terms “block” and “page” are often used 

interchangeably … ���
	
���
… (e.g., depending on how a DBMS is implemented)	


•  A block generally refers to a contiguous sequence of 
sectors from a single track	


–  unit of (physical) storage on a disk, and transfer between main 
memory and disk	


–  a page is a “block” in logical memory … smallest unit of 
transfer supported by an OS (virtual memory, paging)	


–  Pages/blocks range in size (typically around 512b to 8kb)	
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Block (Page) Size vs. Record Size 
•  A database system seeks to minimize the number of block 

transfers between disk and main memory	


•  Transfer can be reduced by keeping as many blocks as possible 
in main memory	


–  Buffer is the portion of main memory available to store copies of disk 
blocks	


–  Buffer manager is responsible for allocating and managing buffer space	


•  If possible, store file blocks sequentially: 	

–  Consecutive blocks on same track, followed by	


–  Consecutive tracks on same cylinder, followed by	


–  Consecutive cylinders adjacent to each other	


–  First two incur no seek time or rotational delay, seek for third is only 
one track	


ECS-‐165A	   15	  



Buffer Manager 

•  Program calls buffer manager when it needs blocks 
from disk	


–  the program is given the address of the block in main 
memory, if it is already in the buffer	


–  if block not in buffer, the buffer manager adds it …	


•  Replaces (throws out) other blocks to make space	


•  The thrown out block is written back to the disk if it was modified 
(since last write to disk)	


•  Once space is allocated, the buffer manager reads in the block 
from disk to the buffer and returns the address 	
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Buffer Replacement Policies 

•  Operating systems often replace the block least recently 
used (LRU strategy) 	


–  In LRU, past (use) is a predictor of future (use)	


•  Alternatively, queries have well-defined access patterns 
(e.g., sequential scans)	


–  A database system can exploit user queries to predict block 
accesses	


–  LRU can be an inefficient strategy for certain access patterns 
that involve (e.g., repeated) sequential scans	


–  The query optimizer can provide hints on replacement 
strategies	
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Buffer Replacement Policies 

Pinned block = not allowed to be written back to disk	


•  Most recently used (MRU) strategy	


–  Pin the block currently being processed	


–  After final tuple of that block processed, the block is 
unpinned and becomes the most recently used block	


–  Keeps older blocks around longer (good for scan problem)	


•  Buffer manager can use statistics regarding the 
probability that a request will reference a particular 
relation	
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File Organization 
•  A database can be stored as a collection of files	


•  Record-oriented storage	


–  Each file is a sequence of records	


–  Each record is a sequence of fields	


•  Typical organization of records in files	


–  Assume the record size is fixed (not always the case …)	


–  Each file has records of one particular type only	


–  … different files used for different relations	
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Record	  1	   Record	  n	  Record	  2	   …	  File	  
Header	   Record	  1	   Record	  n	  Record	  2	   …	  

Block	  1	   Block	  2	  

File	  



File Organization 
•  We also will draw blocks like this: 	
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Block	  1	  

<v1,	  v2,	  …,	  vn>	  

<v1,	  v2,	  …,	  vn>	  

<v1,	  v2,	  …,	  vn>	  

<v1,	  v2,	  …,	  vn>	  

<v1,	  v2,	  …,	  vn>	  

Block	  2	  

<v1,	  v2,	  …,	  vn>	  

<v1,	  v2,	  …,	  vn>	  

<v1,	  v2,	  …,	  vn>	  

<v1,	  v2,	  …,	  vn>	  

<v1,	  v2,	  …,	  vn>	  



Fixed-Length Records 

•  Simple approach	


–  Store record i starting at byte n * (i – 1), where n is the 
size of each (fixed-length) record	


–  Record access is simple, but records may span blocks	


•  Deletion of record i (to avoid fragmentation)	


–  Move (shift) records i + 1, …, n to i, …, n – 1 

–  Move record n to i 

–  Maintain positions of free records in a free list	
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Fixed-Length Records 

Free Lists	


–  In the file header, store the address of the first record 
whose content is deleted	


–  Use this first record to store the address of the second 
available record, and so on	


–  These stored addresses act as “pointers” … they “point” 
to the location of a record (like a linked list)	


–  Tricky to get right (often the case with pointers)	
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Variable-Length Records 

•  Variable-length records are often needed 	

–  for record types that allow a variable length for one or more 

fields (e.g., varchar)	


–  if a file is used to store more than one relation	


Approaches for storing variable length records	


•  End-of-record markers	

–  Fields “packed” together	


–  Difficult to reuse space of deleted records (fragmentation)	


–  No space for record to grow (e.g., due to an update)	


–  … in this case, must move the record	
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Variable-Length Records 

•  Field delimiters	

–  Requires scan of record to get to n-th field value	


–  Requires a field for a NULL value	


•  Each record as an array of field offsets	

–  For overhead of the offset, we get direct access to any field	


–  NULL values represented by assigning begin and end 
pointers of a field to the same address	
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Variable-Length Records 

•  Can cause problems when attributes are modified	

–  growth of a field requires shifting all other fields	


–  a modified record may no longer fit into the block	


–  a (large) record can span multiple blocks	


•  Block headers	

–  maintain pointers to records	


–  contain pointers to free space area	


–  records inserted from end of the block	


–  records can be moved around to keep them contiguous 	
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Organization of Records within a File 
•  Requirements: must efficiently support	


–  insert/delete/update of a record	


–  access to a record (typical using rid)	


–  scan of all records	


•  Heap File (unsorted file)	


–  Simplest file structure	


–  Records are unordered	


–  Record can be placed anywhere in the file where there is space	


•  Sequential File	


–  Records are ordered according to a search key	


•  Clustered Index	


–  related to seqential files, we’ll discuss in Section 7	
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Heap File Organization 

•  At DB runtime, pages/blocks are allocated and deallocated	


•  Information to maintain for a heap file includes pages, free 
space on pages, records on a page	


•  A typical implementation is based on two doubly-linked lists 
of pages, starting with a header block	


•  Two lists can be associated with header block: (1) full page 
list, and (2) list of pages having free space	
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Sequential File Organization 

•  Suitable for applications that require sequential processing of 
the entire file	


•  Records in file are ordered by a search key	


•  Deletions of records managed using pointer chains	

•  Insertions: must locate the position in the file where the 

record is to be inserted	

–  if there is free space, insert record there	

–  if no free space, insert record in an overflow block	


–  in either case, pointer chain must be updated	


•  If many record modifications (esp. insertions and deletions), 
correspondence between search key order and physical order 
can be totally lost => file reorganization	
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