
Announcements & Overview

•  Midterm results: Wednesday	

•  HW3 due Wednesday @ 11:59pm	

•  Start on Database Internals: Data Storage on Disk	

–  Warning: broad overview … “typical” cases, generalities	

–  Many of these topics covered in more depth in 165B	

•  Reading	

–  Chapter 13	

ECS-‐165A	 1	

Basic Database Architecture

2	 ECS-‐165A	

File and Access Methods

Buffer Manager

Disk Space Manager

Recovery
Manager

Transaction
Manager

Lock
Manager

Concurrency Control	

System
Catalog

Index Files

Data Files

Application Front Ends SQL Interface Web Forms

SQL Commands

Plan Executor

Operator Evaluator

Parser

Optimizer

Query
Evaluation
Engine	

DBMS

Up to now …

Bulk of
remainder
of the
course …	

10,000 Foot View of Query Optimization

•  Given an SQL query	

•  Translate it into relational algebra	

•  Find equivalent query plans 	

–  different ways to order operators	

–  different ways to implement each operator	

•  Pick a cheap plan (per estimated cost)	

•  Execute the plan … 	

How are operators implemented? 	

How is data stored on disk?	

ECS-‐165A	 3	

The Plan

ECS-‐165A	 4	

Buffer Management

Disk Space Management

Operating system issues
(which may be handled by
a DBMS or by the OS) 	

DB disk access is expensive!!	 1	

File and Access Methods Heap, index, etc.	 2	

Relational Operator Algorithms Join algorithms, etc.	 3	

Query Optimization Search for a cheap plan	 4	

Relational Algebra Query Tree	

Types of Physical Storage

•  Cache	

–  fastest and most costly form of storage	

–  volatile … content lost if power failure, system crash, etc.	

–  managed by the hardware and/or operating system	

•  Main memory	

–  fast access 	

–  in most applications, too small to store ���

an entire DB 	

–  Volatile	

	

Note: many “main memory only” databases are available ���

… and used increasingly for applications with small storage
requirements and as memory sizes increase	

ECS-‐165A	 5	

Types of Physical Storage

•  Magnetic (“Hard”) Disk Storage	

–  primary medium for long-term storage of data	

–  typically can store entire database (all relations and access
structures)	

•  data must be moved from disk to main memory for access and
written back for storage	

•  direct-access, i.e., it is possible to read data on disk in any order	

•  usually survives power failures and system crashes (disk failure can
occur, but less frequently)	

We focus on disk storage!	

ECS-‐165A	 6	

Types of Physical Storage

•  Optical Storage	

–  non volatile	

–  e.g., CD-ROM, DVD	

–  write-once-read-many optical disks used for archival storage	

•  Tape Storage	

–  non volatile	

–  used primarily for backup and export (to ���
recover from disk failures and restore data)	

–  often used for archival	

–  tapes are typically much cheaper storage	

ECS-‐165A	 7	

Components of a Disk

•  Platters are always spinning
(e.g., 7,200 rpm)	

•  A head reads/writes at ���
any one time	

•  To read a record:	

–  position arm (seek)	

–  engage head	

–  wait for data to spin by	

–  read (transfer data)	

ECS-‐165A	 8	

Pla2ers	 	

Disk	 head	

Arm	 assembly	

Arm	 movement	

Spindle	

Sector	
Tracks	

ECS-‐165A	 9	

ECS-‐165A	 10	

Components of a Disk

•  Each track is made up of
fixed size sectors	

•  Page size is a multiple ���
of sector size	

–  unit of transfer	

–  size depends on system���

and configuration	

–  e.g., 4kb	

•  All tracks that you can ���
reach from one position���
of the arm is called a ���
cylinder (imaginary!)	

ECS-‐165A	 11	

Pla2ers	 	

Disk	 head	

Arm	 assembly	

Arm	 movement	

Spindle	

Sector	
Tracks	

Cost of Accessing Data on a Disk

•  Time to access (read/write) data	

seek time = moving arms to position disk head on track	

rotational delay = waiting for sector to rotate under head	

transfer time = actually moving data to/from disk surface	

•  Key to lower I/O cost: reduce seek & rotational delays!	

–  you have to wait for the transfer time, no matter what	

•  Query cost often measured in number of page I/Os	

–  often simplified to assume each page I/O costs the same	

–  random I/O is more expensive than Sequential I/O	

ECS-‐165A	 12	

Memory versus Disk Access Time

•  Lets say disk access time (all three costs together) is
about 5 milliseconds (ms) … and memory access
time is about 50 nanoseconds (ns)	

–  5 ms = 5,000,000 ns	

–  therefore disk access is 100,000 times slower than

memory access!	

•  Contrast this with: 	

–  1 second (e.g. pick up a piece of paper) 	

–  100,000 seconds ~ 28 hours (a looooong drive…)	

ECS-‐165A	 13	

Block (Page) Size vs. Record Size
•  The terms “block” and “page” are often used

interchangeably … ���
	
���
… (e.g., depending on how a DBMS is implemented)	

•  A block generally refers to a contiguous sequence of
sectors from a single track	

–  unit of (physical) storage on a disk, and transfer between main
memory and disk	

–  a page is a “block” in logical memory … smallest unit of
transfer supported by an OS (virtual memory, paging)	

–  Pages/blocks range in size (typically around 512b to 8kb)	

ECS-‐165A	 14	

Block (Page) Size vs. Record Size
•  A database system seeks to minimize the number of block

transfers between disk and main memory	

•  Transfer can be reduced by keeping as many blocks as possible
in main memory	

–  Buffer is the portion of main memory available to store copies of disk
blocks	

–  Buffer manager is responsible for allocating and managing buffer space	

•  If possible, store file blocks sequentially: 	

–  Consecutive blocks on same track, followed by	

–  Consecutive tracks on same cylinder, followed by	

–  Consecutive cylinders adjacent to each other	

–  First two incur no seek time or rotational delay, seek for third is only
one track	

ECS-‐165A	 15	

Buffer Manager

•  Program calls buffer manager when it needs blocks
from disk	

–  the program is given the address of the block in main
memory, if it is already in the buffer	

–  if block not in buffer, the buffer manager adds it …	

•  Replaces (throws out) other blocks to make space	

•  The thrown out block is written back to the disk if it was modified
(since last write to disk)	

•  Once space is allocated, the buffer manager reads in the block
from disk to the buffer and returns the address 	

ECS-‐165A	 16	

Buffer Replacement Policies

•  Operating systems often replace the block least recently
used (LRU strategy) 	

–  In LRU, past (use) is a predictor of future (use)	

•  Alternatively, queries have well-defined access patterns
(e.g., sequential scans)	

–  A database system can exploit user queries to predict block
accesses	

–  LRU can be an inefficient strategy for certain access patterns
that involve (e.g., repeated) sequential scans	

–  The query optimizer can provide hints on replacement
strategies	

ECS-‐165A	 17	

Buffer Replacement Policies

Pinned block = not allowed to be written back to disk	

•  Most recently used (MRU) strategy	

–  Pin the block currently being processed	

–  After final tuple of that block processed, the block is
unpinned and becomes the most recently used block	

–  Keeps older blocks around longer (good for scan problem)	

•  Buffer manager can use statistics regarding the
probability that a request will reference a particular
relation	

ECS-‐165A	 18	

File Organization
•  A database can be stored as a collection of files	

•  Record-oriented storage	

–  Each file is a sequence of records	

–  Each record is a sequence of fields	

•  Typical organization of records in files	

–  Assume the record size is fixed (not always the case …)	

–  Each file has records of one particular type only	

–  … different files used for different relations	

ECS-‐165A	 19	

Record	 1	 Record	 n	 Record	 2	 …	 File	
Header	 Record	 1	 Record	 n	 Record	 2	 …	

Block	 1	 Block	 2	

File	

File Organization
•  We also will draw blocks like this: 	

ECS-‐165A	 20	

Block	 1	

<v1,	 v2,	 …,	 vn>	

<v1,	 v2,	 …,	 vn>	

<v1,	 v2,	 …,	 vn>	

<v1,	 v2,	 …,	 vn>	

<v1,	 v2,	 …,	 vn>	

Block	 2	

<v1,	 v2,	 …,	 vn>	

<v1,	 v2,	 …,	 vn>	

<v1,	 v2,	 …,	 vn>	

<v1,	 v2,	 …,	 vn>	

<v1,	 v2,	 …,	 vn>	

Fixed-Length Records

•  Simple approach	

–  Store record i starting at byte n * (i – 1), where n is the
size of each (fixed-length) record	

–  Record access is simple, but records may span blocks	

•  Deletion of record i (to avoid fragmentation)	

–  Move (shift) records i + 1, …, n to i, …, n – 1

–  Move record n to i

–  Maintain positions of free records in a free list	

ECS-‐165A	 21	

Fixed-Length Records

Free Lists	

–  In the file header, store the address of the first record
whose content is deleted	

–  Use this first record to store the address of the second
available record, and so on	

–  These stored addresses act as “pointers” … they “point”
to the location of a record (like a linked list)	

–  Tricky to get right (often the case with pointers)	

ECS-‐165A	 22	

Variable-Length Records

•  Variable-length records are often needed 	

–  for record types that allow a variable length for one or more

fields (e.g., varchar)	

–  if a file is used to store more than one relation	

Approaches for storing variable length records	

•  End-of-record markers	

–  Fields “packed” together	

–  Difficult to reuse space of deleted records (fragmentation)	

–  No space for record to grow (e.g., due to an update)	

–  … in this case, must move the record	

ECS-‐165A	 23	

Variable-Length Records

•  Field delimiters	

–  Requires scan of record to get to n-th field value	

–  Requires a field for a NULL value	

•  Each record as an array of field offsets	

–  For overhead of the offset, we get direct access to any field	

–  NULL values represented by assigning begin and end
pointers of a field to the same address	

ECS-‐165A	 24	

Field1 Field2 Field3 Field4 $$$$

Field1 Field2 Field3 Field4

Variable-Length Records

•  Can cause problems when attributes are modified	

–  growth of a field requires shifting all other fields	

–  a modified record may no longer fit into the block	

–  a (large) record can span multiple blocks	

•  Block headers	

–  maintain pointers to records	

–  contain pointers to free space area	

–  records inserted from end of the block	

–  records can be moved around to keep them contiguous 	

ECS-‐165A	 25	

......Free Space...... R1R2R3R4
Size

Location

#Entries

Block Header

Organization of Records within a File
•  Requirements: must efficiently support	

–  insert/delete/update of a record	

–  access to a record (typical using rid)	

–  scan of all records	

•  Heap File (unsorted file)	

–  Simplest file structure	

–  Records are unordered	

–  Record can be placed anywhere in the file where there is space	

•  Sequential File	

–  Records are ordered according to a search key	

•  Clustered Index	

–  related to seqential files, we’ll discuss in Section 7	

ECS-‐165A	 26	

Heap File Organization

•  At DB runtime, pages/blocks are allocated and deallocated	

•  Information to maintain for a heap file includes pages, free
space on pages, records on a page	

•  A typical implementation is based on two doubly-linked lists
of pages, starting with a header block	

•  Two lists can be associated with header block: (1) full page
list, and (2) list of pages having free space	

ECS-‐165A	 27	

Sequential File Organization

•  Suitable for applications that require sequential processing of
the entire file	

•  Records in file are ordered by a search key	

•  Deletions of records managed using pointer chains	

•  Insertions: must locate the position in the file where the

record is to be inserted	

–  if there is free space, insert record there	

–  if no free space, insert record in an overflow block	

–  in either case, pointer chain must be updated	

•  If many record modifications (esp. insertions and deletions),
correspondence between search key order and physical order
can be totally lost => file reorganization	

ECS-‐165A	 28	

