
1

Database-Connection Libraries

Call-Level Interface
Java Database Connectivity

PHP
(slides by Jeff Ullman @ Stanford)

2

An Aside: SQL Injection

 SQL queries are often constructed by
programs.

 These queries may take constants from
user input.

 Careless code can allow rather
unexpected queries to be constructed
and executed.

3

Example: SQL Injection

 Relation Accounts(name, passwd, acct).
 Web interface: get name and password

from user, store in strings n and p, issue
query, display account number.

SELECT acct FROM Accounts

WHERE name = :n AND passwd = :p

4

User (Who Is Not Bill Gates) Types

Name:

Password:

Your account number is 1234-567

gates’ --

who cares?

Comment
in Oracle

5

The Query Executed

SELECT acct FROM Accounts
WHERE name = ’gates’ --’ AND

 passwd = ’who cares?’

All treated as a comment

Exploits of a Mom

6

http://xkcd.com/327

(Aside: Research on Issue @
UC Davis)

7

Static Checking of Dynamically Generated Queries in Database Applications

Carl Gould, Zhendong Su, and Premkumar Devanbu
Department of Computer Science
University of California, Davis
gould,su,devanbu @cs.ucdavis.edu

Abstract

Many data-intensive applications dynamically construct
queries in response to client requests and execute them.
Java servlets, e.g., can create string representations of
SQL queries and then send the queries, using JDBC, to a
database server for execution. The servlet programmer en-
joys static checking via Java’s strong type system. However,
the Java type system does little to check for possible er-
rors in the dynamically generated SQL query strings. Thus,
a type error in a generated selection query (e.g., compar-
ing a string attribute with an integer) can result in an SQL
runtime exception. Currently, such defects must be rooted
out through careful testing, or (worse) might be found by
customers at runtime. In this paper, we present a sound,
static, program analysis technique to verify the correctness
of dynamically generated query strings. We describe our
analysis technique and provide soundness results for our
static analysis algorithm. We also describe the details of a
prototype tool based on the algorithm and present several
illustrative defects found in senior software-engineering
student-team projects, online tutorial examples, and a real-
world purchase order system written by one of the authors.

1. Introduction
Data-intensive applications often dynamically construct

database query strings and execute them. For example,
a typical Java servlet web service constructs SQL query
strings and dispatches them over a JDBC connector to an
SQL-compliant database. In this example scenario, the Java
servlet program generates and manipulates SQL queries as
string data. Here, we refer to Java as the meta-language
used to manipulate object-language programs in SQL.
We use a concrete example (see below) throughout the

paper to explain our analysis technique. Consider a front-
end Java servlet for a grocery store, with an SQL-driven

The first and second authors were supported by a Startup Fund from
the University of California, Davis to the second author. The last au-
thor was supported by NSF (both CISE & ITR programs).

database back-end. The database has a table INVENTORY,
containing a list of all items in the store. This table has three
columns: RETAIL, WHOLESALE, and TYPE, among others.
The RETAIL and WHOLESALE columns are both of type in-
teger, indicating their respective costs in cents. The TYPE
column is an integer, representing the product type-codes
of the items in the table. In the grocery store database, there
is another table TYPES used to look up type-codes. This ta-
ble contains the columns TYPECODE, TYPEDESC, and NAME,
of the types integer, varchar (a string), and varchar, respec-
tively.
The following example code fragment illustrates some

common errors that programmers might make when pro-
gramming Java servlet applications:

ResultSet getPerishablePrices(String lowerBound) {
String query = "SELECT ’$’ || "

+ "(RETAIL/100) FROM INVENTORY "
+ "WHERE ";

if (lowerBound != null) {
query += "WHOLESALE > " + lowerBound + " AND ";

}
query += "TYPE IN (" + getPerishableTypeCode()

+ ");";
return statement.executeQuery(query);

}

String getPerishableTypeCode() {
return "SELECT TYPECODE, TYPEDESC FROM TYPES "

+ "WHERE NAME = ’fish’ OR NAME = ’meat’";
}

The method getPerishablePrices constructs the string
query to hold an SQL SELECT statement to return the
prices of all the perishable items, and executes the query.
It uses the string returned by the method getPerishable-
TypeCode as a sub-query. In the code, || is the concate-
nation operator, and the clause TYPE IN (...) checks
whether the type-code TYPE matches any of the type-codes
of the perishable items. If lowerBound is “595”, then the
query to be executed is:

SELECT ’$’ || (RETAIL/100) FROM INVENTORY
WHERE WHOLESALE > 595 AND TYPE IN

(SELECT TYPECODE, TYPEDESC FROM TYPES
WHERE NAME = ’fish’ OR NAME = ’meat’);

best paper award @ ICSE 2004

8

Host/SQL Interfaces Via
Libraries

  The basic approach to connecting
databases to conventional languages
is to use library calls.

1.  C + CLI or ODBC
2.  Java + JDBC
3.  PHP + PEAR/DB

9

Three-Tier Architecture

  A common environment for using a
database has three tiers of processors:

1. Web servers --- talk to the user.
2.  Application servers --- execute the

business logic.
3.  Database servers --- get what the app

servers need from the database.

10

Example: Amazon

 Database holds the information about
products, customers, etc.

 Business logic includes things like “what
do I do after someone clicks
‘checkout’?”
  Answer: Show the “how will you pay for

this?” screen.

11

Environments, Connections, Queries

 The database is, in many DB-access
languages, an environment.

 Database servers maintain some number
of connections, so app servers can ask
queries or perform modifications.

 The app server issues statements :
queries and modifications, usually.

12

Diagram to Remember

Environment

Connection

Statement

13

SQL/CLI

 Basic idea: access database via a library
of functions.

 The library for C is called SQL/CLI =
“Call-Level Interface.”

 Also (more) commonly used: ODBC
  extends CLI with handy extra features

14

Data Structures

  C connects to the database by structs
of the following types:

1.  Environments : represent the DBMS
installation.

2.  Connections : logins to the database.
3.  Statements : SQL statements to be passed

to a connection.
4.  Descriptions : records about tuples from a

query, or parameters of a statement.

15

Handles

 Function SQLAllocHandle(T,I,O) is used to
create these structs, which are called
environment, connection, and statement
handles.
  T = type, e.g., SQL_HANDLE_STMT.
  I = input handle = struct at next higher level

(statement < connection < environment).
  O = (address of) output handle.

16

Example: SQLAllocHandle

SQLAllocHandle(SQL_HANDLE_STMT,
 myCon, &myStat);

 myCon is a previously created
connection handle.

 myStat is the name of the statement
handle that will be created.

17

Preparing and Executing

 SQLPrepare(H, S, L) causes the string
S, of length L, to be interpreted as a
SQL statement and optimized; the
executable statement is placed in
statement handle H.

 SQLExecute(H) causes the SQL
statement represented by statement
handle H to be executed.

18

Example: Prepare and Execute

SQLPrepare(myStat, ”SELECT
beer, price FROM Sells

 WHERE bar = ’Joe’’s Bar’”,

 SQL_NTS);

SQLExecute(myStat);

This constant says the second argument
is a “null-terminated string”; i.e., figure out
the length by counting characters.

19

Direct Execution

 If we shall execute a statement S only
once, we can combine PREPARE and
EXECUTE with:

SQLExecuteDirect(H,S,L);
  As before, H is a statement handle and L

is the length of string S.

20

Fetching Tuples

 When the SQL statement executed is a
query, we need to fetch the tuples of the
result.
  A cursor is implied by the fact we executed a

query; the cursor need not be declared.

 SQLFetch(H) gets the next tuple from the
result of the statement with handle H.

21

Accessing Query Results

  When we fetch a tuple, we need to
put the components somewhere.

  Each component is bound to a variable
by the function SQLBindCol.
  This function has 6 arguments, of which

we shall show only 1, 2, and 4:
1 = handle of the query statement.
2 = column number.
4 = address of the variable.

22

Example: Binding

 Suppose we have just done SQLExecute
(myStat), where myStat is the handle
for query

SELECT beer, price FROM Sells

WHERE bar = ’Joe’’s Bar’

 Bind the result to theBeer and thePrice:
SQLBindCol(myStat, 1, , &theBeer, ,);
SQLBindCol(myStat, 2, , &thePrice, ,);

23

Example: Fetching

 Now, we can fetch all the tuples of the
answer by:

while (SQLFetch(myStat) != SQL_NO_DATA)
 {
 /* do something with theBeer and
 thePrice */
 }

CLI macro representing
SQLSTATE = 02000 = “failed
to find a tuple.”

24

JDBC

 Java Database Connectivity (JDBC) is a
library similar to CLI/ODBC, but with
Java as the host language.

 Like CLI, but with a few differences for
us to cover.

25

Making a Connection

import java.sql.*;

Class.forName(com.mysql.jdbc.Driver);

Connection myCon =

 DriverManager.getConnection(…);

The JDBC classes

The driver
for mySql;
others exist

URL of the database
your name, and password
go here.

Loaded by
forName

26

Statements

  JDBC provides two classes:
1.  Statement = an object that can accept a

string that is a SQL statement and can
execute such a string.

2.  PreparedStatement = an object that has
an associated SQL statement ready to
execute.

27

Creating Statements

 The Connection class has methods to create
Statements and PreparedStatements.

Statement stat1 = myCon.createStatement();
PreparedStatement stat2 =

 myCon.createStatement(
 ”SELECT beer, price FROM Sells ” +
 ”WHERE bar = ’Joe’ ’s Bar’ ”
); createStatement with no argument returns

a Statement; with one argument it returns
a PreparedStatement.

28

Executing SQL Statements

 JDBC distinguishes queries from
modifications, which it calls “updates.”

 Statement and PreparedStatement each
have methods executeQuery and
executeUpdate.
  For Statements: one argument: the query or

modification to be executed.
  For PreparedStatements: no argument.

29

Example: Update

 stat1 is a Statement.
 We can use it to insert a tuple as:
stat1.executeUpdate(

 ”INSERT INTO Sells ” +

 ”VALUES(’Brass Rail’,’Bud’,3.00)”

);

30

Example: Query

 stat2 is a PreparedStatement holding
the query ”SELECT beer, price FROM
Sells WHERE bar = ’Joe’’s Bar’ ”.

 executeQuery returns an object of class
ResultSet – we’ll examine it later.

 The query:
ResultSet menu = stat2.executeQuery();

31

Accessing the ResultSet

 An object of type ResultSet is
something like a cursor.

 Method next() advances the “cursor” to
the next tuple.
  The first time next() is applied, it gets the

first tuple.
  If there are no more tuples, next() returns

the value false.

32

Accessing Components of Tuples

 When a ResultSet is referring to a tuple,
we can get the components of that
tuple by applying certain methods to
the ResultSet.

 Method getX (i), where X is some
type, and i is the component number,
returns the value of that component.
  The value must have type X.

33

Example: Accessing Components

 Menu = ResultSet for query “SELECT beer,
price FROM Sells WHERE bar = ’Joe’ ’s
Bar’ ”.

 Access beer and price from each tuple by:
while (menu.next()) {

 theBeer = Menu.getString(1);

 thePrice = Menu.getFloat(2);

 /*something with theBeer and
thePrice*/

}

34

PHP: Hypertext Preprocessor

 A language to be used for server-side
actions within HTML text.

 Indicated by <? PHP code ?>.
 DB library exists within PEAR (PHP

Extension and Application Repository).
  Include with include(DB.php).

35

Variables in PHP

 Must begin with $.
 OK not to declare a type for a variable.
 But you give a variable a value that

belongs to a “class,” in which case,
methods of that class are available to it.

36

String Values

 PHP solves a very important problem
for languages that commonly construct
strings as values:
  How do I tell whether a substring needs to

be interpreted as a variable and replaced
by its value?

 PHP solution: Double quotes means
replace; single quotes means don’t.

37

Example: Replace or Not?

$100 = ”one hundred dollars”;
$sue = ’You owe me $100.’;

$joe = ”You owe me $100.”;

 Value of $sue is ’You owe me $100’,
while the value of $joe is ’You owe me
one hundred dollars’.

38

PHP Arrays

 Two kinds: numeric and associative.
 Numeric arrays are ordinary, indexed

0,1,…
  Example: $a = array(”Paul”, ”George”,
”John”, ”Ringo”);
• Then $a[0] is ”Paul”, $a[1] is ”George”, and so

on.

39

Associative Arrays

 Elements of an associative array $a are
pairs x => y, where x is a key string
and y is any value.

 If x => y is an element of $a, then $a
[x] is y.

40

Example: Associative Arrays

 An environment can be expressed as an
associative array, e.g.:

$myEnv = array(

 ”phptype” => ”oracle”,

 ”hostspec” => ”www.stanford.edu”,

 ”database” => ”cs145db”,

 ”username” => ”ullman”,

 ”password” => ”notMyPW”);

41

Making a Connection

 With the DB library imported and the
array $myEnv available:

$myCon = DB::connect($myEnv);

Function connect
in the DB library

Class is Connection
because it is returned
by DB::connect().

42

Executing SQL Statements

 Method query applies to a Connection
object.

 It takes a string argument and returns a
result.
  Could be an error code or the relation

returned by a query.

43

Example: Executing a Query

 Find all the bars that sell a beer given
by the variable $beer.

$beer = ’Bud’;

$result = $myCon->query(

 ”SELECT bar FROM Sells” .

 ”WHERE beer = $beer ;”);

Concatenation
in PHP

Remember this
variable is replaced
by its value.

Method
application

44

Cursors in PHP

 The result of a query is the tuples
returned.

 Method fetchRow applies to the result
and returns the next tuple, or FALSE if
there is none.

45

Example: Cursors

while ($bar =
 $result->fetchRow()) {

 // do something with $bar

}

