ECS 165B: Database System Implementation

UC Davis, Spring 2010

Acknowledgements: design of course project for this class borrowed from CS
346 @ Stanford's RedBase project, developed by Jennifer Widom, and used with
permission. Slides based on earlier ones by Raghu Ramakrishnan, Johannes
Gehrke, Jennifer Widom, Bertram Ludaescher, and Michael Gertz.

Welcome to ECS 165B!

Agenda for today’s class:
— Logistics and course overview
— Introduction to the DavisDB project

— Technical material: pages, files, buffers, records (Chapter 9 of
textbook)

Course Logistics

Instructor:

Prof. Todd J. Green (green@cs.ucdavis.edu)
Office hours: Tuesdays, 11:00-11:50am, 3055 Kemper Hall

Teaching assistant:

Mingmin Chen (michen@ucdavis.edu)
Office hours: Wednesdays, 11:00-11:50am, 053 Kemper Hall

Meeting times:
MWF 4:10-5:00pm (1 Wellman Hall)
Discussion section Fridays 11:00-11:50am (1 Wellman Hall)

More Logistics

Course webpage:
http://www.cs.ucdavis.edu/~green/courses/ecs165b

Class mailing list:
ecs165b-s10@ucdavis.edu
Anyone in the class can post! Don't be shy!

Textbook (optional):

Database Management Systems, 3rd Edition, Ramakrishnan
and Gehrke, McGraw Hill, 2003

What's This Course About?

ECS 165A (last quarter):

how to use a DBMS

ECS 165B (this quarter):

how to build a DBMS

What's This Course About?

Primary focus (new this year!): quarter-long implementation project

- You will build major components of a (simplified) relational
database system, DavisDB, in C++

- In teams of 2, delivered in 5 stages

Secondary focus: a sampler of further topics in databases
- XML and semistructured data, data warehousing, ...
- A taste of database theory

Meta-focus: large-scale software engineering (debugging, revision
control systems, best coding practices, ...)

How Will This Course Be Graded?

Basic formula: project 80% (in 5 parts), closed-book quizzes 20%
(2 of them)

No midterm, no final...

...but this will be a difficult, time-consuming class!

Code graded for correctness, efficiency, and style

Extra credit for winners of DavisDB 1/0 efficiency contest, as
well as the DavisDB code beauty contest

Should | Take This Class?

Pre-requisites:

DBMS fundamentals (ECS 165A)
C/C++ programming and data structures (ECS 60)
Ability to work independently

Time, ingenuity, and a sense of humor © (This class is a beta-
version!)

What you'll get out of the class:

Deeper and broader knowledge of DBMS
Software engineering experience that will pay off once you enter
the real world

Images of the CSIF lab's soul-crushing mountain scenery posters
forever burned into your retinas

Forming Teams
The project will be done in teams of 2.*

Choose your partner carefully! Your grades for the project will
be identical. It's up to you to figure out how to share the
work and get along. No marriage counseling provided.**

Send an email to the TA by Wednesday with your preference for
a project partner (or "no preference" if you have none).

*If you prefer to work alone, you may do so, but you will still be responsible for
the same work as the teams, and no special allowance will be made in grading.

**Divorces may be granted on a case-by-case basis.

Some Project Logistics

Team members will coordinate their efforts, and submit their code, via
subversion (a standard revision control system)

A short (1-2 page), high-level writeup will be part of the submitted work
Standard platform: the CSIF Linux machines

Automated testing for correctness (~Y80% of score), manual grading of
writeup, design, and code style (¥20% of score)

We'll emphasize fundamental skills, such as the proper use of a debugger.
(printf won't cut it in this class, just as it doesn't in the real world.)

More on the logistics next time...

Review: Basic DBMS Architecture

[Web Forms

] [Application Front Ends] [SQL Interface

¢ /
\ SQL Commands

v
DBMS Plan Executor Parser
Query
. Evaluation
Operator Evaluator Optimizer Engine
v
<—> File and Access Methods |€——>
Transaction
Manager \|/
<> Buffer Manager <> RSO
Manager
Lock v
Manager)
<—> Disk Space Manager <—>

Concurrency Control

Index Files
v > System
Data Files Catalog

DavisDB Architecture (What's Left Out)

SQL Commands (select-project-join SQL fragment!)

\
implified!
DBMS Plan Executor Parser (simplified!)
Query
Evaluation
Operator Evaluator Optimizer Engine
v
File and Access Methods
Buffer Manager
v
Disk Space Manager

Index Files
v > System
Data Files Catalog

+ user-defined extension

Major Components of DavisDB

results commands

Command Parser (given)

Query Engine (4)

index scans
Indexing (2) g Record Manager (1)

create files, read/

Disk Space Manager (given) Buffer Manager (given)

data, metadata

OS File System
+ User Extension (5)

Important Dates

Project due dates, subject to change:
Part 1 (record manager): 4/11
Part 2 (indexing): 4/25
Part 3 (system manager): 5/2
Part 4 (query engine): 5/23
Part 5 (user extension): proposal due 5/16, code due 6/6

Quizzes:
Quiz #1: 5/5
Quiz #2: 6/2

Also:
Mid-quarter course review: 5/7

File and Buffer Management Review

File and Buffer Management Review

Disk Space Manager (given) Buffer Manager (given)

OS File System

Disks and Files

e (Traditional) DBMS stores information on hard disks

* This has major implications for DBMS design!

* READ: transfer data from disk to memory (RAM)
 WRITE: transfer data from RAM to disk

* Both are high-cost operations, relative to in-memory operations, so
must be planned carefully!

» DavisDB I/0 efficiency contest: minimize total READS and WRITES

Why Not Store Everything in Main Memory?

Traditional arguments:

[t costs too much. In 1995, S1000 would buy you either 128MB of
RAM or 7.5GB of disk.

 Main memory is volatile. We want data to be saved between runs.
(Obviously!)

Traditional storage hierarchy:

* Main memory (RAM) for currently-used data
* Disk for the main database (secondary storage)

* Tapes for archiving older versions of the data (tertiary storage)
DavisDB follows traditional model (minus the tapes ©

Discussion: do the traditional arguments still hold water?

Disks and Paged Files

Secondary storage device of choice
Main advantage over tapes: random access versus sequential

Data on hard disks is stored and retrieved in units called disk blocks
or (as we'll term them in DavisDB) pages

Unlike RAM, time to retrieve a disk page varies depending upon
location on disk...

...therefore, relative placement of pages on disk has major impact
on DBMS performance!

* For simplicity, we'll overlook this in DavisDB

File is organized as a sequence of pages

Buffer Management
Main memory is limited
Pages of disk files move in/out of in-memory buffer pool
DavisDB # pages in buffer pool: 40

Total buffer size (@4K pages): 160K -- tiny!

