ECS 165B: Database System Implementation
Lecture 11

UC Davis
April 21, 2010

Acknowledgements: portions based on slides by Raghu Ramakrishnan and
Johannes Gehrke.



Class Agenda

e Last time:

— Overview of DavisDB project, Part 2: indexing

* Today:

— Query evaluation techniques: sorting

* Reading

— Chapters 12 and 13 of Ramakrishnan and Gehrke (or Chapter 13 of
Silberschatz et al)



Announcements

Code review sign-up sheet posted (see email | sent out for link); code
reviews happening today through Monday

Repository updates: TestIX.cpp (sample tests for indexing); page file
manager bugfixes; (not quite) final version of TestRM.cpp*

Grades for Part 1: Friday?

Discussion section Friday @11am: B+ tree jam session

Quiz #1 in class next Wednesday



Overview of Query Evaluation Techniques

Background material for Part 4 of the DavisDB project; some
concepts we saw in Lecture 7 include:

e evaluation plan — relational algebra query drawn as a tree;

* annotated evaluation plan — each relational operator (e.g.,
"join") is annotated with the physical operator that will be
used to perform the operation (e.g., "index nested loops join")

e query optimizer — takes a SQL query, produces an efficient
annotated evaluation plan

e query execution engine — executes the annotated evaluation
plan



Logical versus Physical Operators

join: E, | X]| E, nested loops join, index nested
loops join, sort-merge join, ...

projection: m(E) projection
predicate: R file scan, index scan, ...
selection: o (E) selection

selection w/base predicate: o(R) file scan with condition, index
scan with condition, ...

* File scan (with condition): RecordFileScan (DavisDB Part 1)

* Index scan (with condition): IndexScan (Part 2)
— Also underlies index nested loops join

e Others will be implemented in QueryEngine (Part 4)



Recall: Sort-Merge Join of Rand S

% Sort R and S on the join column, then scan them to do
a “merge” (on join col.), and output result tuples.

» Advance scan of R until current R-tuple >= current S tuple,
then advance scan of S until current S-tuple >= current R
tuple; do this until current R tuple = current S tuple.

« At this point, all R tuples with same value in Ri (current R
group) and all S tuples with same value in 5j (current S
group) match; output <r, s> for all pairs of such tuples.

* Then resume scanning R and S.

+ R is scanned once; each S group is scanned once per
matching R tuple. (Multiple scans of an S group are
likely to find needed pages in buffer.



Example of Sort-Merge Join

sid |bid day rname

sid lsname rating lage |28 103 [12/4/96 | guppy

2 dustin 7 450 |28 (103 |11/3/96 | yuppy
28 |yuppy 0 350 |31 |101 [10/10/96 | dustin

31 |lubber 8 555 (|31 [102 [10/12/96 | lubber
58 |rusty 10 350 |58 [103 [11/12/96 | dustin

% Cost: M logM + N log N + (M+N)
* The cost of scanning, M+N, could be M*N (very unlikely!)

% With 35, 100 or 300 buffer pages, both Reserves and
Sailors can be sorted in 2 passes; total join cost: 7500.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13




Something to Consider in Part 2 (Indexing)

In Part 4, nested loops join and index nested loops join will
be the only join algorithms you will be required to implement

Sort-merge join will be optional (XC), *but*, here's something
to do in Part 2 that will make it easier

Scan of B+ tree: required to return all record ids matching
condition; not required to return them in order!

May be a little extra work to have your scan return them in
order, depending on details of your implementation...

*But™ this will let you use the index to do the sort for sort-
merge join, if R and S are both indexed on the join attribute

— We'll look at this again in a few slides



Plan for Upcoming Lectures

Rest of today: we'll talk about external sorting, needed for
sort-merge join, duplicate elimination, ...

Next lecture: we'll focus on the other physical query operators

Subsequent lectures: generating physical plans (annotated
evaluation plans) from logical plans (evaluation plans, aka
relational algebra)






