ECS 165B: Database System Implementation
Lecture 12

UC Davis
April 23, 2010

Acknowledgements: portions based on slides by Raghu Ramakrishnan and
Johannes Gehrke.

Class Agenda

e Last time:

— Query evaluation techniques; external sorting

* Today:
— Finish with external sorting
— Physical query operators

 Reading

— Chapters 13 and 14 of Ramakrishnan and Gehrke (or Chapter 13 of
Silberschatz et al)

Announcements

Grades for Part 1: Monday

Quiz #1 in class next Wednesday (now reflected on web page);
review session in class Monday

Quiz #2 (along with "Awards Ceremony") will be during final
exam slot

External Sorting, continued

Using B+ Trees for Sorting

Scenario: table to be sorted has B+ tree index on sorting
column(s)

Idea: can retrieve records in order by traversing leaf pages
Is this a good idea?

Cases to consider:
— B+ tree is clustered Good idea!

— B+ tree is not clustered Could be a very bad idea!

Clustered B+ Tree Used for Sorting

e Cost: root to the leftmost
leaf, then retrieve all leaf Index

pages (index is clustered) (Directs search)

* Each page fetched just / T =y Data Entries
i ("Sequence set")

O 0 N\

e Always better than
external sorting! Data Records

Unclustered B+ Tree Used for Sorting

 Leaves of tree have record ids, rather than records themselves
* |n worst case, one |/O per data record!

Index
(Directs search)

4 Pl wlw] -'.:'-.: k" -"-' 0" Data Entries
sz ("Sequence set")

Data Records

External Sorting vs Unclustered Index

of data
pages Unclustered index
N Sorting p=1 p=10 p=100
100 200 100 1,000 10,000
1,000 2,000 1,000 10,000 100,000

10,000 40,000 10,000 100,000 1,000,000
100,000 600,000 100,000 1,000,000 10,000,000
1,000,000 |8,000,000 |1,000,000 {10,000,000 |100,000,000
10,000,000 | 80,000,000 {10,000,000 | 100,000,000 | 1,000,000,000

p = # of records per page
B = 1000 and block size = 32 for external sorting
p =100 is the more realistic value

Summary of External Sorting

e External sorting is important; DBMS may dedicate part of
buffer pool for sorting!

* External merge sort minimizes disk I/O cost
— Pass 0: produces sorted runs of size B (# of buffer pages)
— # of runs merged at a time depends on B and block size
— Larger block size means less 1/O cost per page
— Larger block size means smaller # runs merged

— In practice, # of runs rarely more than 2 or 3

Summary: External Merge Sort

13,4 |6,2] |9,4] |8,7] [5,6] [3,1] [2] F Input file
B L T T passo

A 4 v A 4 v A\ 4
(3.4] [2.6] [a.9] [7.8] [5.6] [1.3] [2] I 1-pageruns
N4 K A4 PASS 1
2.3 4,7 1,3 g
46 8.9 5.6 E 2-page runs
= PASS 2
e 1
4.4 1.2 4-page runs
6,7 3,5
8.9 6
1,2
2.3
3,4 8-page run:
4,5
6,6
7.8
9

e 2-way merge sort can be generalized to n-way merge sort,
using as many interal buffer pages as we have available

Physical Relational Operators, Part 1: Joins

Relational Operations

 We will consider how to implement:

— Selection (o) Selects a subset of rows from relation

— Projection (m) Deletes/reorders columns from relation
— Join (&) Allows us to combine two relations

— Difference (-) Tuples in one relation, but not the other
— Union (U) Tuples in either relation

— Aggregation SUM, MIN, etc. and GROUP BY

* Since each operation returns a relation, operations can be
composed.

e After we cover the operations in isolation, we will discuss how
to optimize queries formed by composing them

Schema for Running Examples

Sailors(sid: integer, sname: string, rating: integer, age: float)

Reserves(sid: integer, bid: integer, day: date, rname: string)

* Reserves: each tuple is 40 bytes long, 100 tuples per page,
1000 pages

e Sailors: each tuple is 50 bytes long, 80 tuples per page, 500
pages

Equality Joins With One Join Column

select * 5
from Reserves R, Sailors S , '
where R.sid = S.sid (& is bowtie)

Common! Must be carefully optimized. R x Sis large, soR x S
followed by selection is inefficient

Assume: M tuplesin R, p, tuples per page, N tuplesin S, p
tuples per page

— In our examples, R is Reserves and S is Sailors

Will consider more complex join conditions later

Cost metric: # of 1/Os

Simple Nested Loops Join

for each tuple rin R do

for each tuple sin Sdo
if rand s agree on join attribute then

add <r,s> to result

* For each tuple in the outer relation R, we can the entire inner
relation S

— Cost: M + p,*M*N = 1000 + 100*1000*500 I/Os

* Page-oriented nested loops join: for each page of R, get each
page of S, and write out matching pairs of tuples <r,s> where r
is in R-page and s is in S-page

— Cost: M+ M*N = 1000 + 1000*500

Index Nested Loops Join

for each tuple rin R do

for each tuple sin Sdo
if rand s agree on join attribute then

add <r,s> to result

e If thereis an index on the join attribute of one relation (say S),
can make it the inner and exploit the index

— Cost: M + ((M * pg) * cost of finding matching S tuples)

* For each R tuple, cost of probing S index is about 1.2 for hash
index, 2-4 for B+ tree. Cost of then finding S tuples depends
on clustering

— Clustered index: usually 1 1/0O per group of tuples with a given key;
unclustered: up to 1 I/0O per tuple in group of tuples with a given key

Block Nested Loops Join

 Use one page as an input buffer for scanning the inner S, one
page as the output buffer, and all remaining pages to hold
block of outer R

— For each matching tuple r in R-block, s in S-page, add <r,s> to result.
Then read next R-block, scan S, and repeat.

R&S Join Result
Hash table for block of R

(k < B-1 pages)

:4

Input buffer forS Output buffer

Sort-Merge Join

e Sort R and S on the join attribute, then scan them to do a
merge (on join attribute), and output result tuples

— Advance scan of R until current R-tuple 2 current S-tuple, then
advanced scan of S until current S-tuple 2 current R-tuple; do this until
current R-tuple = current S-tuple

— At this point, R-tuple matches current S-tuple (and all following S-
tuples with same value); output <r,s> for all pairs of such tuples

— Then resume scanning Rand S

 Risscanned once; each S "group" is scanned once per
matching R tuple.

Example of Sort-Merge Join

sid

bid

day

rname

sid |sname |rating |age

22 |dustin 7 45.0
28 | yuppy 9 350
31 |lubber | 8 555
44 | guppy 5 350
58 |rusty 10 350

28
28
31
31
31
58

103
103
101
102
101
103

12/4/96
11/3/96
10/10/96
10/12/96
10/11/96
11/12/96

guppy

yuppy
dustin

lubber
lubber

dustin

 Cost: MlogM+ NlogN +~(M+ N)

— In worst case M + N could actually be M*N, but unlikely

Refinement of Sort-Merge Join

We can combine the merging phases in the sorting ot
R and S with the merging required for the join.

. WithB>~L , Where L is the size of the larger relation, using
the sorting refinement that produces runs of length 2B in
Pass 0, #runs of each relation is < B/ 2.

» Allocate 1 page per run of each relation, and “merge” while
checking the join condition.

» Cost: read+write each relation in Pass 0 + read each relation
in (only) merging pass (+ writing of result tuples).
» In example, cost goes down from 7500 to 4500 I/Os.
In practice, cost of sort-merge join, like the cost of
external sorting, is linear.

Partition both
relations using hash
function h: R tuples
in partition i will
only match S tuples
in partition j

Read in a partition
of R, hash it using
h'(# h!). Scan
matching partition
of S, search for
matches.

Hash Join

Original
Relation OUTPUT
S 1
1
INPUT 2
hash 2
> function o0 g
e o o o 0 ¢
h B-1
B-1
~~— ~—
Disk B main memory buffers Disk
Partitions .
of R&S JOlIl Result
Hash table for partition
S
hash Ri (k < B-1 pages) ———
fn .
oo | w | OO - O -
I:Il:l h2 ® 4 b
¢ 0 ¢ ; . _)
Input buffer Output .
QD/ for Si buffer U,

B main memory buffers

Disk

