ECS 165B: Database System Implementation
Lecture 13

UC Davis
April 26, 2010

Acknowledgements: portions based on slides by Raghu Ramakrishnan and
Johannes Gehrke.



Class Agenda

* Last time:
— Finish with external sorting
— Physical join operators

* Today:
— More physical operators: selection, projection, duplicate elimination,
aggregates
— Quiz review
 Reading

— Chapter 14 of Ramakrishnan and Gehrke (or Chapter 13 of Silberschatz
et al)



Announcements

Grades for Part 1: out tonight

Quiz #1 in class on Wednesday



Evaluation of Relational Operations, cont.



Selections

Selection above another
operator: just evaluate
the selection condition

Selection above a source
relation (common case):
can use an index, if
available

D — A

D — Q

Q — Q

R — A

AN

AN



Using an Index for Selections

* Cost depends on # of qualifying tuples ("selectivity") and
clustering

— Cost of finding qualifying data entries (typically small) plus cost of
retrieving records (could be large w/o clustering)

* Important refinement for unclustered indices:
1. Find qualifying data entries
2. Sort the record ids of the data records to be retrieved

3. Fetchrecord ids in order. This ensures that each data page is looked
at just once (though # of such pages likely to be higher than with
clustering)



Complex Selections (1)

select ..
from ..

conjunction of
where day<8/9/94 and bid=5 and sid=3

=,<,etc terms

* First approach: find the most selective access path, retrieve
tuples using it, then apply any remaining selection conditions

— Most selective access path: an index or file scan that we estimate will
require the fewest page I/Os

— Selection terms matching this index reduce the number of tuples
retrieved from disk; remaining terms filter the retrieved tuples, but do
not affect # of tuples fetched

— E.g., a B+ tree index on day can be used; then, bid=5 and sid=3 must
be checked for each retrieved tuple. Or, a hash index on <bid,sid>
could be used; day<8/9/94 must then be checked



Complex Selections (2)

select ..
from ..
where day<8/9/94 and bid=5 and sid=3

e Second approach: use intersection of record ids (if we have 2
or more matching, non-clustered indices)

— Get sets of rids of data records using each matching index
— Then intersect these sets of rids (we'll discuss intersection soon)
— Retrieve the records and apply any remaining selection terms

— e.g., if we have a B+ tree index on day and another on sid, both using
Alternative (2), we can retrieve rids of records satisfying day<8/9/94
using the first, rids of records satisfying sid=3 using the second,
intersect, retrieve records and check bid=5



Duplicate-Eliminating Projection (1)

select distinct R.sid, S.bid
from Reserves R

* First approach: use modified external merge-sort

— Modify Pass 0 of external sort to eliminate unwanted fields, to save
space. Thus, runs of about 2B pages are produced (heapsort), but
tuples in runs are smaller than input tuples. Size ratio depends on #
and size of fields that are dropped.

— Modify merging passes to eliminate duplicates. Thus, # of result tuples
smaller than input. Difference depends on # of duplicates.

— Cost: in pass 0, read original relation (size M), write out same number
of smaller tuples. In merging passes, fewer tuples written out in each
pass. Using Reserves example, 1000 input pages reduced to 250 in
Pass O if size ratio is 0.25.



Duplicate-Eliminating Projection (2)

select distinct R.sid, S.bid
from Reserves R

 Second approach: use modified external hash sort

— Partitioning phase: read R using one input buffer. For each tuple,
discard unwanted fields, apply hash function h on all fields to choose
one of B-1 output buffers. Result is B-1 partitions (of tuples with no
unwanted fields). Tuples from different partitions guaranteed to be
distinct.

— Duplicate elimination phase: for each partition, read and build in-
memory hash table, using hash function h' (# h) on all fields, while
discarding duplicates. If partition does not fit in memory, can apply
hash-based projection algorithm recursively to this partition

— Cost: for partition, read R, write out each tuple, but with fewer fields.
This is read in next phase.



Discussion of Projection

 Merge-sort based approach is the standard; better handling of
skew and (as a bonus) result is sorted

 |f anindex on the relation contains all wanted attributes in its
search key, can do index-only scan

— Apply projection techniques to data entries (much smaller!)

* If an ordered (i.e., tree) index contains all wanted attributes as
prefix of search key, can do even better:

— Retrieve data entries in order (index-only scan), discard unwanted
fields, compare adjacent tuples to check for duplicates



Set Operations

intersect and cross-product: special cases of join
union (distinct) and except are similar; we'll do union

Sort-based approach to union:
— Sort both relations (on all attributes)
— Scan sorted relations and merge them, discarding duplicates

— Alternative: merge runs from Pass O for both relations

Hash-based approach to union:
— Partition R and S using hash function h (on all attributes)

— For each S-partition, build in-memory hash table (using h'), scan
corresponding R-partition and add tuples to table while discarding
duplicates



Aggregate Operators (avg, min, etc)

select avg(S.age)
from Sailors S
where S.rating > 2

* Without grouping:
— In general, requires scanning the relation

— Given index whose search key includes all attributes in the select or
where clauses, can do index-only scan



Aggregate Operators (2)

select rating, min(S.age)
from Sailors S
group by rating

 With grouping:

— Sort on group-by attributes, then scan relation and compute
aggregate for each group. (Can improve upon this by combining
sorting and aggregate computation.)

— Similar approach based on hashing on group-by attributes

— Given tree index whose search key includes all attributes in select,
where, and group-by clauses, can do index-only scan; if group-by
attributes form prefix of search key, can retrieve data entries/tuples in
group-by order



Impact of Buffering

* |If several operations are executing concurrently, estimating
the # of available buffer pool pages is guesswork

* Repeated access patterns interact with buffer replacement
policy

— e.g., inner relation is scanned repeatedly in Simple Nested Loops Join.
With enough buffer pages to hold inner, replacement policy does not
matter. Otherwise, MRU is best, LRU is worst (sequential flooding).

— Does replacement policy matter for Block Nested Loops?

— What about Index Nested Loops?



Summary

* Avirtue of relational DBMSs: queries are composed of a few
basic operators; the implementation of these operators can
(and must!) be carefully tuned

 Many alternative implementation techniques for each
operator; no universally superior technique for most
operators

* Must consider available alternatives for each operation in a
qguery and choose best one based on system statistics, etc.
This is part of the broader task of optimizing a query
composed of several operators.



Quiz #1 (Wednesday): Whirlwind Review



What Have We Covered So Far in this Class?

Buffer and file management
Indexing
External sorting

Query evaluation
— But not query optimization

Relational calculus, relational algebra, conjunctive queries
DavisDB Parts 1 and 2; subversion

Quiz will cover all of these topics!

Study aids: (1) slides, (2) project documentation, (3) review
guestions in textbook: Ch 8, 9, 10, 12, 13, 14



Buffer and File Management

Buffer pool

— pinning

— replacement policies
Record formats

— fixed-length versus variable-length

Page formats

— for fixed-length versus variable-length records

Record files / unordered heap files

— Schemes for keeping track of free space



DavisDB Part 1

What are the roles of...

* PageFileManager
* FileHandle
 RecordManager
* RecordFileHandle

e RecordFileScan



Indexing

Clustered versus unclustered
Alternatives for unclustered indices (alts. (2) vs (3))
Hash-based indices

Tree-structured indices
— ISAM versus B+ tree

— B+ trees: lookups, range searches, insertions and deletions



DavisDB Part 2

e What are the roles of...
— IndexManager

— IndexHandle

— |IndexScan



External Sorting

* External merge sort (2-way, n-way, ...)
e Hash-based external sort

* Using B+ trees to sort



Query Evaluation

Logical versus physical operators
Join:
— Simple Nested Loops Join
— Index Nested Loops Join
— Block Nested Loops Join
— Sort-Merge Join
— Hash Join
Selection:
— Index-based selection
Projection, union, etc:
— duplicate elimination



Relational calculus, relational algebra, conjunctive
gueries

Relational calculus: logic-based query language

Expressive equivalence of relational calculus and relational
algebra

What is a conjunctive query (SQL, relational calculus,
relational algebra)



Miscellaneous

e Subversion!



