ECS 165B: Database System Implementation
Lecture 14

UC Davis
April 28, 2010

Acknowledgements: portions based on slides by Raghu Ramakrishnan and
Johannes Gehrke, as well as slides by Zack Ives.

Class Agenda

e Last time:

— More physical operators: selection, projection, duplicate elimination,
aggregates

— Quiz review

* Today:
— Quiz #1
— Query optimization

 Reading

— Chapter 15 of Ramakrishnan and Gehrke (or Chapter 14 of Silberschatz
et al)

Announcements

Reminder: DavisDB Part 2 due Sunday @11:59pm

Statistics re DavisDB Part 1:

AVG 76/100
MEDIAN 82/100
STDEV 25

MIN 26/100

MAX 111/100

Relational Query Optimization

Query Optimization

* Given a SQL query:
— Build a logical query plan: tree of algebraic operations
— Transform into "better" logical plan

— Convert into a physical query plan, using implementations of operators
we've seen in the previous lectures

* Goal: find the physical query plan that has minimum cost
— In practice: avoid the plans with the highest costs

— Sources of cost: Interactions with other concurrent tasks; sizes of
intermediate results; choices of algorithms, access methods; I/O and CPU;
properties of data such as skew, order, placement; ...

Optimization Strategies

Many possible strategies, all boil down to a search over the
space of possible plans

— Super-exponential complexity in the # of operators

— Hence, exhaustive search generally not feasible

What can you do?
— Heuristics only: INGRES, Oracle until the mid-90s
— Randomized, simulated annealing, ... : many efforts in the mid-90s
— Heuristics plus cost-based join enumeration: System R

— Stratifed search (heuristics plus cost-based enumeration of joins and a
few other operators): Starbust

— Unified search (full cost-based search): EXODUS, Volcano, Cascades

Highlights of System R Optimizer

Historically, the most influential optimizer design

Cost estimation: approximate art at best

— Statistics, maintained in system catalogs, used to estimate cost of
operations and result sizes

— Considers combination of CPU and I/O costs
Plan space: too large, must be pruned using heuristics

— Only the space of left-deep plans is considered

— Pipelined execution model: output of each operator is pipelined into
the next operator, without storing it in a temporary relation

— Cartesian products avoided

Dynamic programming approach

Query Blocks: Units of Optimization in System R

select S.name
from Sailors S
where S.age in| (select max(S2.age)
from Sailors S2

group by S2.rating)

nested block

outer block

SQL query parsed into a collection of query blocks, to be
optimized one block at a time

Nested blocks treated as calls to a subroutine, made once per
outer tuple

For each block, the plans considered are

— All available access methods, for each relation in £rom clause

— All left-deep join trees: i.e., all ways to join the relations one-at-a-time,
with the inner relation in the from clause, considering all join order
permuations and join methods

Left-Deep Join Trees

e Left-deep join tree: &

 "Bushy" join tree: P

Relational Algebra Equivalences

* Allow us to choose different join orders; to "push" selections
and projections ahead of joins; etc

1. o5, (0F,(E)) = 0F,ar, (E)
2. or(E; [U,N, —] E3) = or(E1) [U, N, —] or(Ey)

3. O'F(E1 X E2) — O'Fo(O'F1(E1) X O'FQ(EQ));
F = FO A F1 A F2, Fi contains only attributes of E;, i = 1, 2.

4. O-A:B(El X E2) = E4 A[>—4B E-

5. ma(E; [U, N, —] Ey) = wa(Ey) [U, N, —] ma(Ey)

Relational Algebra Equivalences (2)

0. 7TA(E1 X EQ) p— 7TA1(E1) X 7TA2(E2),
with Ai = A N { attributes in E; },i = 1, 2.

7. E; [U,N] E; = E; [U,N] Ey
(E; UEy) UE3 = E; U (E; UE3) (the analogous holds for M)

3. E{ X Ey = 7TA1,A2(E2 X El)
(E1 X Eg) X Es = E; X (E2 X E3)
(E1 X Eg) X Es = (E1 X E3) X Es

9. E; XM Ey =Ey, XE; (Ey WEy) XE3 =E; X (Ey X Ej)

(Theoretical aside: is this set of equivalences complete?)

Enumeration of Alternative Plans

 There are two main cases:
— Single-relation plans
— Multiple-relation plans

* Single-relation plans: queries consist of a combination of
selections, projections, and aggregates (no joins)

— Each available access path (file or index scan) is considered, and the
one with the least estimated cost is chosen

— The different operations are carried out together in a pipeline (e.g., if
an index is used for a selection, projection is done for each retrieved
tuple, and the resulting tuples are pipelined into the aggregate
computation)

Cost Estimation

Must estimate cost of each plan considered

To do this, must estimate cost of each operation in plan tree
— Depends on input cardinalities, statistical properties, etc

Must also estimate size of result for each operation in tree!

— Use information about the input relations

— For selections and joins, assume independence of predicates

Dirty little secret of DBMS world: estimation works well for
simple plans, but poorly for complex plans

Queries Over Multiple Relations

Fundamental heuristic in System R: only left-deep join trees are
considered

As the # of joins increases, the # of alternative plans grows very
rapidly; we need to restrict the search space

Left-deep join trees allow us to generate all fully pipelined plans

— i.e., intermediate results not written to temporary files (not
"materialized")

— not all left-deep physical plans are fully pipelined

Bushy join trees: can't have fully pipelined plans

— Inner table must always be materialized for each tuple of the outer table

— So, a plan in which the inner table is the result of a join forces us to
materialize the result of that join

Enumeration of Left-Deep Plans

* Left-deep plans differ only in the order of relations, the access
method for each relation, and the join method for each join

 Enumeration via dynamic programming strategy: n passes,
where n = # relations joined
— Pass 1: find best 1-relation plan for each relation

— Pass 2: find best way to join result of each 1-relation plan (as outer) to
another relation

— Pass n: find best way to join result of each (n-1)-relation plan (as outer)
to the nth relation

* For each subset of relations, retain only:

— Cheapest plan overall, plus

— Cheapest plan for each "interesting order" of the tuples

