ECS 165B: Database System Implementation
Lecture 15

UC Davis
April 30, 2010

Acknowledgements: portions based on slides by Raghu Ramakrishnan and
Johannes Gehrke, as well as slides by Zack Ives.

Class Agenda

* Last time:
— Quiz #1
— Query optimization

* Today:

— Query optimization, continued

 Reading

— Chapter 15 of Ramakrishnan and Gehrke (or Chapter 14 of Silberschatz
et al)

Announcements

Reminder: DavisDB Part 2 due Sunday @11:59pm

DavisDB Part 3: out Sunday night, due Sunday 5/8 @11:59pm

Statistics for Quiz #1:

avg 15.9/19
median 16/19
std 2.5

min 10/19

max 20/19

Reminder: Implementation Hints for DavisDB Part 2

 Handling duplicates: what if many records have the same key
value? Can circumvent by including (internally) the record id

as part of the key

— i.e., "key" becomes a pair <key, recordID>
— No duplicates, by construction!
 Handling deletions: you are permitted to just use tombstones

— When an entry is deleted, replace by a special marker indicating an
empty slot (which may be reused later)

— Internal nodes are never deleted or merged!

Relational Query Optimization, Continued

Query Optimization

* Given a SQL query:
— Build a logical query plan: tree of algebraic operations
— Transform into "better" logical plan

— Convert into a physical query plan, using implementations of operators
we've seen in the previous lectures

* Goal: find the physical query plan that has minimum cost
— In practice: avoid the plans with the highest costs

— Sources of cost: Interactions with other concurrent tasks; sizes of
intermediate results; choices of algorithms, access methods; I/O and CPU;
properties of data such as skew, order, placement; ...

Optimization Strategies

Many possible strategies, all boil down to a search over the
space of possible plans

— Super-exponential complexity in the # of operators

— Hence, exhaustive search generally not feasible

What can you do?
— Heuristics only: INGRES, Oracle until the mid-90s
— Randomized, simulated annealing, ... : many efforts in the mid-90s
— Heuristics plus cost-based join enumeration: System R

— Stratifed search (heuristics plus cost-based enumeration of joins and a
few other operators): Starbust

— Unified search (full cost-based search): EXODUS, Volcano, Cascades

Highlights of System R Optimizer

Historically, the most influential optimizer design

Cost estimation: approximate art at best

— Statistics, maintained in system catalogs, used to estimate cost of
operations and result sizes

— Considers combination of CPU and I/O costs
Plan space: too large, must be pruned using heuristics

— Only the space of left-deep plans is considered

— Pipelined execution model: output of each operator is pipelined into
the next operator, without storing it in a temporary relation

— Cartesian products avoided

Dynamic programming approach

Query Blocks: Units of Optimization in System R

select S.name
from Sailors S
where S.age in| (select max(S2.age)
from Sailors S2

group by S2.rating)

nested block

outer block

SQL query parsed into a collection of query blocks, to be
optimized one block at a time

Nested blocks treated as calls to a subroutine, made once per
outer tuple

For each block, the plans considered are

— All available access methods, for each relation in £rom clause

— All left-deep join trees: i.e., all ways to join the relations one-at-a-time,
with the inner relation in the from clause, considering all join order
permuations and join methods

Left-Deep Join Trees

e Left-deep join tree: &

 "Bushy" join tree: P

Relational Algebra Equivalences

* Allow us to choose different join orders; to "push" selections
and projections ahead of joins; etc

1. o5, (0F,(E)) = 0F,ar, (E)
2. or(E; [U,N, —] E3) = or(E1) [U, N, —] or(Ey)

3. O'F(E1 X E2) — O'Fo(O'F1(E1) X O'FQ(EQ));
F = FO A F1 A F2, Fi contains only attributes of E;, i = 1, 2.

4. O-A:B(El X E2) = E4 A[>—4B E-

5. ma(E; [U, N, —] Ey) = wa(Ey) [U, N, —] ma(Ey)

Relational Algebra Equivalences (2)

0. 7TA(E1 X EQ) p— 7TA1(E1) X 7TA2(E2),
with Ai = A N { attributes in E; },i = 1, 2.

7. E; [U,N] E; = E; [U,N] Ey
(E; UEy) UE3 = E; U (E; UE3) (the analogous holds for M)

3. E{ X Ey = 7TA1,A2(E2 X El)
(E1 X Eg) X Es = E; X (E2 X E3)
(E1 X Eg) X Es = (E1 X E3) X Es

9. E; XM Ey =Ey, XE; (Ey WEy) XE3 =E; X (Ey X Ej)

(Theoretical aside: is this set of equivalences complete?)

Enumeration of Alternative Plans

 There are two main cases:
— Single-relation plans
— Multiple-relation plans

* Single-relation plans: queries consist of a combination of
selections, projections, and aggregates (no joins)

— Each available access path (file or index scan) is considered, and the
one with the least estimated cost is chosen

— The different operations are carried out together in a pipeline (e.g., if
an index is used for a selection, projection is done for each retrieved
tuple, and the resulting tuples are pipelined into the aggregate
computation)

Cost Estimation

Must estimate cost of each plan considered

To do this, must estimate cost of each operation in plan tree
— Depends on input cardinalities, statistical properties, etc

Must also estimate size of result for each operation in tree!

— Use information about the input relations

— For selections and joins, assume independence of predicates

Dirty little secret of DBMS world: estimation works well for
simple plans, but poorly for complex plans

Cost Estimation for Single-Relation Plans

* Clustered index I matching one or more selections:

— cost = (# pages in /) x product of RF's* of matching selects
* Non-clustered index | matching one or more selections:

— cost = (# pages in /| + # tuples in R) x product of RF's of matching selects
* Sequential scan of file:

— cost = # of pagesinR

e Extra cost for duplicate elimination if user says select
distinct

* RF is "reduction factor" : what % of the data passes the selection condition

Queries Over Multiple Relations

Fundamental heuristic in System R: only left-deep join trees are
considered

As the # of joins increases, the # of alternative plans grows very
rapidly; we need to restrict the search space

Left-deep join trees allow us to generate all fully pipelined plans

— i.e., intermediate results not written to temporary files (not
"materialized")

— not all left-deep physical plans are fully pipelined

Bushy join trees: can't have fully pipelined plans

— Inner table must always be materialized for each tuple of the outer table

— So, a plan in which the inner table is the result of a join forces us to
materialize the result of that join

Enumeration of Left-Deep Plans

* Left-deep plans differ only in the order of relations, the access
method for each relation, and the join method for each join

 Enumeration via dynamic programming strategy: n passes,
where n = # relations joined
— Pass 1: find best 1-relation plan for each relation

— Pass 2: find best way to join result of each 1-relation plan (as outer) to
another relation

— Pass n: find best way to join result of each (n-1)-relation plan (as outer)
to the nth relation

* For each subset of relations, retain only:

— Cheapest plan overall, plus

— Cheapest plan for each "interesting order" of the tuples

Enumeration of Plans (2)

order by, group by, aggregates, etc. handled as a final step,
using either an "interestingly ordered" plan or an additional
sorting operator

An (n-1)-way plan is not combined with an additional relation
unless there is a join condition between them, unless all
predicates in where have been used up

— i.e., avoid Cartesian products if possible

In spite of pruning plan space, this approach is still
exponential in the # of tables

Enumeration of Plans: Example

T[sname

Obid=100 AND rating>5
SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid = S.sid AND
R.bid = 100 AND
S.rating > 5

sid=sid

Reserves Sailors

 Assume: B+ tree index on Sailors.rating; hash index on
Sailors.sid; B+ tree index on Reserves.bid (all unclustered)

Enumeration of Plans Example: Pass 1

e Consider access path methods for single relations

— Sailors: three access methods (B+ tree, hash index, sequential scan),
taking into account selection o

rating>5-
* B+ tree? Yes, matches o; also returns tuples sorted by rating
* Hash index? Sequential scan? More costly than B+ tree

=> B+ tree preferred, with tuples sorted by rating

— Reserves: two access methods (B+ tree, sequential scan), taking into
account selection o, 4-1¢0-

* B+ tree? yes, matches o
e Sequential scan? Slower than B+ tree

=> B+ tree preferred

Enumeration of Plans Example: Pass 2

Consider all two-relation plans, using access method from Pass 1 for
outer relation in join

Reserves outer, Sailors inner:

— Need only sailors tuples that satisfy 0., ;4.5 and o where

. sid=value
value is some value from an outer tuple
— Access method for sailors:
* B+tree? Yes, matches 0, ;45

* Hash index? Yes, matches o = more selective than >

sid=value;
=> Hash index preferred
— Alternative join methods: all are considered, e.g.,

* Sort-merge join: inputs must be sorted by sid; no single-relation
access method returns them sorted this way, so requires extra sort

* Index nested loops: can use, since have hash index on Sailors.sid
* etc
=> Index nested loops join preferred

Enumeration of Plans Example: Pass 2 (cont)

Sailors outer, Reserves inner:

— Need only Reserves tuples that satisfy 0, ; 4-,9o @and o where

value is some value from an outer tuple

sid=value

— Choose access method for Reserves

— Choose preferred join algorithm

— Retain cheapest plan overall: e.g.,

Index nested loops join with Reserves outer, Sailors inner preferred

e Pass 2 is the last pass, so we output this as the plan

Enumeration of Plans Example (2): Pass 3

SELECT S.sid, B.bid

FROM Reserves R, Sailors S, Boats B

WHERE R.sid = S.sid AND B.bid = R.bid
AND B.color = "red"

* For each plan retained in Pass 2, taken as the outer relation,
consider how to join the remaining relation as the inner one

— {Reserves, Sailors}outer, Boats inner
— {Reserves, Boats} outer, Sailors inner: not considered!
* no join condition for {Reserves, Boats}
— {sailors, Boats} outer, Reserves inner: also not considered!

* no join condition for {Sailors, Boats}

Cost Estimation for Multi-Relation Plans

SELECT attribute-list
FROM relation-1list
WHERE term; AND ... AND term,

Key issue: estimating cardinalities of intermediate results

Maximum # tuples in result is the product of the cardinalities of
relations in the from clause

Reduction factor (RF) associated with each term reflects the impact
of the term in reducing result size. Result cardinality = max # tuples
x product of all RF's

Multirelation plans are built up by joining one new relation at a
time
— Cost of join method plus estimation of join cardinality gives us both cost
estimate and result size estimate

Errors at each step are compounded!

Nested Queries

WHERE EXISTS

Nested block is optimized
independently, with the outer
tuple considered as providing a
selection condition

Outer block is optimized with the
cost of "calling" nested block
computation taken into
consideration

Implicit order of these blocks
means that some good strategies
are not considered. The non-
nested version of the query is
typically optimized better.

SELECT S.sname
FROM Sailors S

(SELECT *
FROM Reserves R
WHERE R.bid
AND R.sid

= 103
S.sid)

Nested block to optimize:

SELECT *

FROM Reserves R

WHERE R.bid =
AND R.sid

103
outer value

Equivalent non-nested query:

SELECT S.name

FROM Sailors S, Reserves R

WHERE S.sid =
AND R.bid

R.sid

103

Summary

* Query optimization: crucial task in relational DBMS

— Declarative query language requires powerful optimizer

* Even an end-user (DBA) must understand optimization in
order to understand the performance impact of a given
database design (schema, indices, etc) on a workload
(expected queries and updates)

* Two parts to optimizing a query:
— Explore the space of alternative plans
* Must prune search space; System R considers left-deep plans only
— Must estimate cost of each plan that is considered

* Must estimate size of result and cost for each plan node

* Key issues: statistics, indices, operator implementations

Summary (continued)

* Single-relation queries:
— All access paths considered, cheapest is chosen

— lIssues: selections that match index, whether index key has all needed
fields and/or provides tuples in a desired order

 Multiple-relation queries: greedy, inductive approach
— Base case: All single-relation plans are first enumerated
» Selections/projections considered as early as possible

— Inductive case: for each n-relation plan, all ways of joining another
relation (as inner) are considered, to produce an n+1 relation plan

— At each level, for each subset of relations, only best plan (for each
"interesting order" of tuples) is retained

