ECS 165B: Database System Implementation
Lecture 16

UC Davis
May 3, 2010

Acknowledgements: portions based on slides Zack Ives (which incorporate some
content due to Susan Davidson and Raghu Ramakrishnan)

Class Agenda

e Last time:

— Query optimization, continued

* Today:
— Introduction to XML databases

* Reading

— Chapter 15 of Ramakrishnan and Gehrke (or Chapter 14 of Silberschatz
et al)

Announcements

DavisDB Part 3: out Sunday-right Tuesday night, due Sunrday-5/8
Tuesday 5/10 @11:59pm

XML: A Semi-Structured Data Model

Why XML?

XML is the confluence of several factors:
— The Web needed a more declarative format for data
— Documents needed a mechanism for extended tags
— Database people needed a more flexible interchange format
— “Lingua franca” of data

— It’s parsable even if we don’t know what it means!

Original expectation:

— The whole web would go to XML instead of HTML (cf. Xyleme SA)

Today'’s reality:

— Not so... but XML is used all over “under the covers”

Why DB People Like XML

Can get data from all sorts of sources

— Allows us to touch data we don’t own!

— This was actually a huge change in the DB community
Interesting relationships with DB techniques

— Useful to do relational-style operations

— Leverages ideas from object-oriented, semistructured data

Blends schema and data into one format
— Unlike relational model, where we need schema first

— ... But too little schema can be a drawback, too!

XML Anatomy

<?xml version="1.0" encoding="1SO-8859-1" 7> < Processing Instr.
<dblp> < Open-tag

<mastersthesis mdate="2002-01-03" key="ms/Brown92">
<author>Kurt P. Brown</author>
<title>PRPL: A Database Workload Specification Language</title>

<year>1992</year> '
<school>Univ. of Wisconsin-Madison</school> Element

</mastersthesis>

<article mdate="2002-01-03" key="tr/dec/SRC1997-018">
<editor>Paul R. McJones</editor>

<title>The 1995 SQL Reunion</title> ttribute
<journal>Digital System Research Center Report</journal>
<volume>SRC1997-018</volume>

<year>1997</year> \ Close-tag

<ee>db/labs/dec/SRC1997-018.html</ee>
<ee>http://www.mcjones.org/System_ R/SQL_Reunion 95/</ee>

</article>

Well-Formed XML

A legal XML document — fully parsable by an XML parser

— All open-tags have matching close-tags (unlike so many HTML
documents!), or a special:

<tag/> shortcut for empty tags (equivalent to <tag></tag>)

— Attributes (which are unordered, in contrast to elements) only appear
once in an element

— There’s a single root element

— XML is case-sensitive

XML as a Data Model

XML “information set” includes 7 types of nodes:
— Document (root)
— Element
— Attribute
— Processing instruction
— Text (content)
— Namespace

— Comment

XML data model includes this, plus typing info, plus order info
and a few other things

XML Data Model Visualized

(and simplified!) oot JECHENE
p-i
text
mdafe";"““\ <ff\daté’,"“* \
Fall - E S N N ey
) o 1 o)) | e Escite
1997 2002..
ms/Brown92 d The. =
PRPL... Sffads
i Digital... db/labs/dec
Kurt P.... Univ.... Paul R.
SRC... http://www.

10

What Does XML Do?

Serves as a document format (super-HTML)
— Allows custom tags (e.g., used by MS Word, OpenOffice)

— Supplement it with stylesheets (XSL) to define formatting

Data exchange format (must agree on terminology)

Marshalling and unmarshalling data in SOAP and Web
Services

11

XML as a Super-HTML (MS Word)

<hl class="Sectionl">
ECS165B: Database Systems Implementation

</h1l>

<h2 class="Sectionl">Spring 2010</h2>

<p class="MsoNormal">
<place>1 Wellman</place>, Monday/Wednesday/Friday
<time Hour="16" Minute="10">4:10PM — 5:00PM
</time>

</p>

12

XML Easily Encodes Relations

Student-course-grade sid | serno | exp-grade
1 | 570103 B
23 | 550103 A

<student-course-grade>
<tuple><sid>1</sid><serno>570103</serno>
<exp-grade>B</exp-grade></tuple>
<tuple><sid>23</sid><serno>550103</serno>
<exp-grade>A</exp-grade></tuple>
</student-course-grade>

13

But XML is More Flexible...
“Non-First-Normal-Form” (NF?)

<parents>
<parent name=“Jean” >
<son>John</son>
<daughter>Joan</daughter>
<daughter>Jill</daughter>
</parent>
<parent name=“Feng”>
<daughter>Felicity</daughter>

</parent>

Coincides with “semi-structured data”,
invented by DB people at Penn and Stanford

14

XML and Code

Web Services (.NET, recent Java web service toolkits) are using
XML to pass parameters and make function calls

— Why?
* Easy to be forwards-compatible
» Easy to read over and validate (?)

e Generally firewall-compatible

— Drawbacks? XML is a verbose and inefficient encoding!

XML is used to represent:

— SOAP: the “envelope” that data is marshalled into
— XML Schema: gives some typing info about structures being passed
— WSDL: the IDL (interface def language)

— UDDI: provides an interface for querying about web services

Integrating XML: What If We Have
Multiple Sources with the Same Tags?

Namespaces allow us to specify a context for different tags

Two parts:
— Binding of namespace to URI
— Qualified names

<root xmlns=“http://www.first.com/aspace”
xmlns:otherns="...">

<tag xmlns:myns="http://www.fictitious.com/mypath”>

<thistag>is in the default namespace (aspace)</thistag>

<myns:thistag>is in myns</myns:thistag>

<otherns:thistag>is a different tag in otherns
</otherns:thistag>
</tag>

</root>

16

XML Isn’t Enough on Its Own

It’s too unconstrained for many cases!
— How will we know when we’re getting garbage?
— How will we query?

— How will we understand what we got?

We also need:
Some idea of the structure
e Our focus next
Presentation, in some cases — XSL(T)
* We’'ll talk about this soon
Some way of interpreting the tags...?

* We’ll talk about this later in the quarter

17

Structural Constraints:
Document Type Definitions (DTDs)

The DTD is an EBNF grammar defining XML structure
— XML document specifies an associated DTD, plus the root element
— DTD specifies children of the root (and so on)

DTD defines special significance for attributes:
— |Ds — special attributes that are analogous to keys for elements

— |IDREFs — references to IDs

— |IDREFS — a nasty hack that represents a list of IDREFs

18

An Example DTD

Example DTD:

<!ELEMENT dblp((mastersthesis | article)*)>

<!ELEMENT mastersthesis
(author,title,year,school,committeemember*)>

<!ATTLIST mastersthesis(mdate CDATA #REQUIRED
key ID #REQUIRED
advisor CDATA #IMPLIED>

<!ELEMENT author (#PCDATA)>

Example use of DTD in XML file:

<?xml version="1.0" encoding="IS0-8859-1" ?>
<!DOCTYPE dblp SYSTEM “my.dtd">
<dblp>..

19

Representing Graphs and Links in XML

<?xml version="1.0" encoding="1IS0-8859-1" ?>
<!DOCTYPE graph SYSTEM “special.dtd">
<graph>
<author id=*“authorl”>
<name>John Smith</name>
</author>
<article>
<author ref=“authorl”/> <title>Paperl</title>
</article>
<article>
<author ref=“authorl”/> <title>Paper2</title>
</article>

20

’xml

Graph Data Model

IDOCTYPE

=S A

Vo e @

authorl

John Smith

'ref

Paperl

7T TN
e N
’ Ay
|]
rerv
A 4
e

Paper2

21

’xml

IDOCTYPE

- ~
e N
1 Ay
[!
\ I /
~ 4

ﬂ’/

authorl

Graph Data Model

an®
.
....
8%

John Smith |°

Paperl

7T TN
e N
’ Ay
|]
rerv
A ’/
~

~a=-

R

Paper2

22

DTDs Aren’t Expressive Enough

DTDs capture grammatical structure, but have some drawbacks:
— Not themselves in XML — inconvenient to build tools for them
— Don’t capture database's datatype domains

— No way of defining OO-like inheritance

23

XML Schema

Aims to address the shortcomings of DTDs

XML syntax (verbose!)

Can define keys using XPaths

Type subclassing that’s more complex than in a programming language

* Programming languages don’t consider order of member
variables!

e Subclassing “by extension” and “by restriction”

... And, of course, domains and built-in datatypes

24

Basics of XML Schema

Need to use the XML Schema namespace (generally named xsd)

* simpleTypes are a way of restricting domains on scalars

— Can define a simpleType based on integer, with values within a
particular range

* complexTypes are a way of defining element/attribute
structures
— Basically equivalent to |ELEMENT, but more powerful

— Specify sequence, choice between child elements

— Specify minOccurs and maxOccurs (default 1)

e Must associate an element/attribute with a simpleType, or an

element with a complexType

25

Simple Schema Example

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name=“mastersthesis" type=“ThesisType"/>
<xsd:complexType name=“ThesisType">
<xsd:attribute name=“mdate" type="xsd:date"/>
<xsd:attribute name=“key" type="xsd:string"/>
<xsd:attribute name="advisor" type="xsd:string"/>
<xsd:sequence>
<xsd:element name=“author" type=“xsd:string"/>
<xsd:element name=“title" type=“xsd:string"/>
<xsd:element name=“year" type=*“xsd:integer"/>
<xsd:element name=“school" type=“xsd:string”/>

<xsd:element name=“committeemember"
type=“CommitteeType” minOccurs=*“0"/>

</xsd:sequence>
</xsd:complexType>

</xsd:schema>

Designing an XML Schema/DTD

Not as formalized as relational data design
— We can still use ER diagrams to break into entity, relationship sets

— ER diagrams have extensions for “aggregation” — treating smaller
diagrams as entities — and for composite attributes

— Note that often we already have our data in relations and need to
design the XML schema to export them!

Generally orient the XML tree around the “central” objects

Big decision: element vs. attribute

— Element if it has its own properties, or if you *might* have more than
one of them

— Attribute if it is a single property — or perhaps not!

27

Summary: XML as a Data Model

XML is a non-first-normal-form (NF?) representation
— Can represent documents, data

— Standard data exchange format

— Several competing schema formats — esp., DTD and XML Schema —
provide typing information

28

