ECS 165B: Database System Implementation
Lecture 18

UC Davis
May 7, 2010

Some slide content due to Zack Ives

Class Agenda

e Last time:
— Overview of DavisDB Part 3: System Manager
— Mid-course evaluation

* Today:
— Results of mid-course evaluation
— Querying XML

* Reading:

— none

Mid-Course Evaluation Results

* First, thanks for your thoughtful and constructive answers!

* Things that seem to be working well:
— Lectures seem well-received (only one of you dislikes powerpoint?!?)
— Availability of extra help
— Most find class relevant and useful

— High-level ideas seem clear

* Main complaints:
— Project is way, way, way too time-consuming

— Not enough guidance on project; how to turn high-level ideas into
code

— My other classes are suffering

What Could Be Done Differently Next Year

Gentler ramp-up and slower pacing for the project

More time on preliminary fundamentals

— General C++ refresher
— C++ memory management

— Serialization/deserialization techniques
Preparatory written assignments before starting the project?
More cookbook code for early parts of project?

5 credits?

What Could be Done Differently this Quarter

Ease up on the project?

— No, seriously. EASE UP DUDE. We know where you live.

Some down time between assignments?

A little more credit for those of us who worked hard but still
came up short?

Extra credit opportunities?

Make Quiz #2 worth a little more?

Adjustments for the Rest of the Quarter

Grading for Part 2 will weight effort (% implementation
complete) higher than was done in Part 1

More time for Part 3
— Now due Sunday, 5/16 @11:59pm
— Part 4 due date pushed back to Friday, 6/4
Part 4 will be significantly easier than planned:
— Bar for full credit will be relatively low
— More starting code will be provided
— There will be opportunities for significant extra credit

— Details TBD

Remember: the class will be graded on a curve

The Plan for the Rest of the Quarter (2)

Vote: should Quiz #2 be worth more (say, 20% of grade)?

Result of vote: NO

Clarifying Some Misconceptions

* "This course won't be useful because | won't be building a
database in industry”

* "l don't anticipate passing this class"

Querying XML

How to Query a Directed Graph? A Tree?

General approach used by many XML, semistructured, and
object-oriented query languages:

— Define some sort of a template describing traversals from the root of
the directed graph

— In XML, the basis of this template is called an XPath

10

On the Aesthetics of XML [Wadler|Buneman]

The Evolution of Language

2r (Descartes)

Ax.2x (Church)

(LAMBDA (X) (x 2 X)) (McCarthy)

XPaths

* Inits simplest form, an XPath is like a path in a file system:

/mypath/subpath/*/morepath

 The XPath returns a node set representing the XML nodes
(and their subtrees) at the end of the path

— XPaths can have node tests at the end, returning only particular node

types, e.g., text(), processing-instruction(), comment(),
element(), attribute()

— XPath is fundamentally an ordered language: it contains order-based
predicates, and it returns nodes in document order

12

Sample XML

<?xml version="1.0" encoding="IS0-8859-1" 7>
<db1p>
<mastersthesis mdate="2002-01-03" key="ms/Brown92'">
<author>Kurt P. Brown</author>
<title>PRPL: A Database Workload Specification Language</title>
<year>1992</year>
<school>Univ. of Wisconsin-Madison</school>
</mastersthesis>
<article mdate="2002-01-03" key="tr/dec/SRC1997-018">
<editor>Paul R. McJones</editor>
<title>The 1995 SQL Reunion</title>
<journal>Digital System Research Center Report</journal>
<volume>SRC1997-018</voTlume>
<year>1997</year>
<ee>db/1abs/dec/SRC1997-018.html</ee>
<ee>http://www.mcjones.org/System_R/SQL_Reunion_95/</ee>
</article>

XML Data Model Visualized @

- p-

(Root

>l

text
?xml @

- - o

mdate’,/'l;‘"“ ‘?T‘date'/'"‘)
VY N N T key
] o e) | DO
1997 2002..

ms/Brown92 The. =

PRPL... dtd e

, Digital... db/labs/dec
Kurt P.... Univ.... Paul R.

SRC... http://www.

14

Some Example XPath Queries

/dblp/mastersthesis/title
/dblp/*/editor
//title

//title/text()

15

Context Nodes and Relative Paths

XPath has a notion of a context node: it’s analogous to a current
directory

a n

.” represents this context node

— “..” represents the parent node

— We can express relative paths:
subpath/sub-subpath/../..
gets us back to the context node

» By default, the document root is the context node

16

Predicates — Selection Operations

A predicate allows us to filter the node set based on selection-
like conditions over sub-XPaths:

/dblp/article[title = “Paperl”]
which is equivalent to:

/dblp/articlel./title/text() = “Paperl”]

17

Axes: More Complex Traversals

* Thus far, we've seen XPath exps. that go down the tree (or up one step)
* But we might want to go up, left, right, etc.

— These are expressed with so-called axes:
self::path-step
child: :path-step parent::path-step
descendant: :path-step ancestor: :path-step
descendant-or-self::path-step ancestor-or-self::path-step
preceding-sibling::path-step following-sibling: :path-step
preceding: :path-step following: :path-step

— The previous XPaths we saw were in “abbreviated form”

18

Querying Order

We saw in the previous slide that we could query for
preceding or following siblings or nodes

We can also query a node for its position according to some
index:

— fn::first(), fn::last() return index of first or last element
matching the last step

— fn::position() gives the relative count of the current node

— e.g.,

child::article[fn::position() = fn::last()]

19

Users of XPath

XML Schema uses simple XPaths in defining keys and
uniqueness constraints

XQuery
XSLT

XLink and XPointer, hyperlinks for XML

20

XQuery

* A strongly-typed, Turing-complete XML manipulation language
— Attempts to do static typechecking against XML Schema
— Based on an object model derived from Schema

* Unlike SQL, fully compositional, highly orthogonal:
— Inputs & outputs collections (sequences or bags) of XML nodes

— Anywhere a particular type of object may be used, may use the results of a
query of the same type

— Influenced by ideas from functional programming

* Tension: attempts to satisfy the needs of data management and
document management

— The (Ijstabase-style core is mostly complete (even has support for NULLs in
XML!!

— The document keyword querying features are still in the works — shows in
the order-preserving default model

XQuery’s Basic Form

Has an analogous form to SQL’s
select..from..where..group by..order by blocks

Semantics: bind nodes (or node sets) to variables; operate
over each legal combination of bindings; produce a set of
nodes

“FLWOR” statement:

for {iterators that bind variables}
Tet {collections}

where {conditions}

order by {order-conditions}

return {output constructor}

22

lteration (“for-loops”) in XQuery

A series of (possibly nested) for statements binding the results of XPaths to
variables

for $root in document(“http://my.org/my.xml”),

$sub in $root/rootElement,
$sub2 in $sub/subElement, ..

* Essentially, a pattern to be matched, producing a "binding tuple"

* For each binding, evaluate the where clause and possibly output results
constructed using return template

« document() or doc() function specifies an input file as a URI

— Old version was “document”; now “doc” but it depends on your XQuery
implementation

23

Two XQuery Examples

<root-tag> {
for $p in document(“dblp.xml1”)/dblp/proceedings,
$yr in $p/yr
where $yr = “1999”
return <proc> {$p} </proc>
} </root-tag>

for $1 in document(“dblp.xm1”)/dblp/inproceedings][
author/text() = “John Smith”]
return <smith-paper>
<title>{ $i/title/text() }</title>
<key>{ $i/@key }</key>
{ $i/crossref }
</smith-paper>

24

Nesting in XQuery

Nesting XML trees is a very common operation

In XQuery, it’s easy — put a subquery in the return clause
where you want things to repeat!

for $u in document(“dblp.xml1”)/universities
where $u/country = “USA”
return <ms-theses-99>
{ $u/title } {
for $mt in $u/../mastersthesis
where $mt/year/text() = “1999” and
return $mt/title }
</ms-theses-99>

25

Collections and Aggregation in XQuery

* In XQuery, many operations return collections
— XPaths, sub-XQueries, functions over these, ...

— The let clause assigns the collection to a variable

* Aggregation simply applies a function from collections to
values (very elegant compared to SQL!)

lTet $allpapers := document(“dblp.xml1”)/dblp/article in
return <article-authors>

<count>{

fn:count(fn:distinct-values($allpapers/authors))
}</count>{
for $paper in doc(“dblp.xml1”)/dblp/article
let $pauth := $paper/author
return <paper> {$paper/title}
<count>{
fn:count($pauth)
}</count>
</paper>
}

</article-authors>

26

Collections and Aggregation (2)

Unlike in SQL, we can compose aggregations and create new
collections from old:

<result> {

let $avgltemsSold := fn:avg(
for $order in document(“my.xml”)/orders/order
let $totalSold = fn:sum($order/item/quantity)
return $totalSold)

return $avgItemsSold

} </result>

27

Sorting in XQuery

e SQL allows you to sort query output, with a special order by
clause

e XQuery borrows this idea

* In XQuery, what we order is the sequence of “result tuples”
output by the return clause:

for $x in document(“dblp.xml1”)/proceedings
order by $x/title/text()
return $x

28

What If Order Doesn’t Matter?

By default:
— Relations in SQL are unordered

— Collections in XQuery are ordered

But, unordered queries are much faster to answer!

XQuery allows the user to say "don't worry about preserving
order here":

unordered {
for $x in (mypath)...

}

29

Removing Duplicates

In XQuery, duplicate elimination is performed by a function
over a collection (returning another collection)

But since we have nodes with nested structure in XML, can do
duplicate removal according to (1) value or (2) node identifier

— Intuition from C++: (1) "strcmp(s1,s2) == 0" versus (2) "a == b"
— fn:distinct-values(collection): (1) remove by value

— fn:distinct-nodes(collection):(2) remove by node identifier

30

Another Difference wrt SQL:
Metadata is Data in XQuery

Can get a node’s name by using node-name():

for $x in document(“dblp.xm1”)/dblp/*
return node-name($x)

Can construct elements and attributes using computed names:

for $x in document(“dblp.xml1”)/dblp/*,
$year in $x/year,
$title in $x/title/text(),

element node-name($x) {
attribute {“year-" + $year} { $title }

}

31

XQuery Summary

Very flexible and powerful language for XML

— Clean and orthogonal: can always replace a collection with an
expression that creates collections

— DB and document-oriented (we hope)

— The core is relatively clean and easy to understand

Turing Complete — we’ll talk more about XQuery functions soon

32

