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Class Agenda

e Last time:
— Overview of DavisDB Part 3: System Manager
— Mid-course evaluation

* Today:
— Results of mid-course evaluation
— Querying XML

* Reading:

— none



Mid-Course Evaluation Results

* First, thanks for your thoughtful and constructive answers!

* Things that seem to be working well:
— Lectures seem well-received (only one of you dislikes powerpoint?!?)
— Availability of extra help
— Most find class relevant and useful

— High-level ideas seem clear

* Main complaints:
— Project is way, way, way too time-consuming

— Not enough guidance on project; how to turn high-level ideas into
code

— My other classes are suffering



What Could Be Done Differently Next Year

Gentler ramp-up and slower pacing for the project

More time on preliminary fundamentals

— General C++ refresher
— C++ memory management

— Serialization/deserialization techniques
Preparatory written assignments before starting the project?
More cookbook code for early parts of project?

5 credits?



What Could be Done Differently this Quarter

Ease up on the project?

— No, seriously. EASE UP DUDE. We know where you live.

Some down time between assignments?

A little more credit for those of us who worked hard but still
came up short?

Extra credit opportunities?

Make Quiz #2 worth a little more?



Adjustments for the Rest of the Quarter

Grading for Part 2 will weight effort (% implementation
complete) higher than was done in Part 1

More time for Part 3
— Now due Sunday, 5/16 @11:59pm
— Part 4 due date pushed back to Friday, 6/4
Part 4 will be significantly easier than planned:
— Bar for full credit will be relatively low
— More starting code will be provided
— There will be opportunities for significant extra credit

— Details TBD

Remember: the class will be graded on a curve



The Plan for the Rest of the Quarter (2)

Vote: should Quiz #2 be worth more (say, 20% of grade)?

Result of vote: NO



Clarifying Some Misconceptions

* "This course won't be useful because | won't be building a
database in industry”

* "l don't anticipate passing this class"



Querying XML



How to Query a Directed Graph? A Tree?

General approach used by many XML, semistructured, and
object-oriented query languages:

— Define some sort of a template describing traversals from the root of
the directed graph

— In XML, the basis of this template is called an XPath
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On the Aesthetics of XML [Wadler|Buneman]

The Evolution of Language

2r  (Descartes)

Ax.2x  (Church)

(LAMBDA (X) (x 2 X)) (McCarthy)



XPaths

* Inits simplest form, an XPath is like a path in a file system:

/mypath/subpath/*/morepath

 The XPath returns a node set representing the XML nodes
(and their subtrees) at the end of the path

— XPaths can have node tests at the end, returning only particular node

types, e.g., text(), processing-instruction(), comment(),
element(), attribute()

— XPath is fundamentally an ordered language: it contains order-based
predicates, and it returns nodes in document order
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Sample XML

<?xml version="1.0" encoding="IS0-8859-1" 7>
<db1p>
<mastersthesis mdate="2002-01-03" key="ms/Brown92'">
<author>Kurt P. Brown</author>
<title>PRPL: A Database Workload Specification Language</title>
<year>1992</year>
<school>Univ. of Wisconsin-Madison</school>
</mastersthesis>
<article mdate="2002-01-03" key="tr/dec/SRC1997-018">
<editor>Paul R. McJones</editor>
<title>The 1995 SQL Reunion</title>
<journal>Digital System Research Center Report</journal>
<volume>SRC1997-018</voTlume>
<year>1997</year>
<ee>db/1abs/dec/SRC1997-018.html</ee>
<ee>http://www.mcjones.org/System_R/SQL_Reunion_95/</ee>
</article>
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Some Example XPath Queries

/dblp/mastersthesis/title
/dblp/*/editor
//title

//title/text()
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Context Nodes and Relative Paths

XPath has a notion of a context node: it’s analogous to a current
directory

a n

.” represents this context node

— “..” represents the parent node

— We can express relative paths:
subpath/sub-subpath/../..
gets us back to the context node

» By default, the document root is the context node
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Predicates — Selection Operations

A predicate allows us to filter the node set based on selection-
like conditions over sub-XPaths:

/dblp/article[title = “Paperl”]
which is equivalent to:

/dblp/articlel./title/text() = “Paperl”]
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Axes: More Complex Traversals

* Thus far, we've seen XPath exps. that go down the tree (or up one step)
* But we might want to go up, left, right, etc.

— These are expressed with so-called axes:
self::path-step
child: :path-step parent::path-step
descendant: :path-step ancestor: :path-step
descendant-or-self::path-step ancestor-or-self::path-step
preceding-sibling::path-step following-sibling: :path-step
preceding: :path-step following: :path-step

— The previous XPaths we saw were in “abbreviated form”
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Querying Order

We saw in the previous slide that we could query for
preceding or following siblings or nodes

We can also query a node for its position according to some
index:

— fn::first(), fn::last() return index of first or last element
matching the last step

— fn::position() gives the relative count of the current node

— e.g.,

child::article[fn::position() = fn::last()]
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Users of XPath

XML Schema uses simple XPaths in defining keys and
uniqueness constraints

XQuery
XSLT

XLink and XPointer, hyperlinks for XML
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XQuery

* A strongly-typed, Turing-complete XML manipulation language
— Attempts to do static typechecking against XML Schema
— Based on an object model derived from Schema

* Unlike SQL, fully compositional, highly orthogonal:
— Inputs & outputs collections (sequences or bags) of XML nodes

— Anywhere a particular type of object may be used, may use the results of a
query of the same type

— Influenced by ideas from functional programming

* Tension: attempts to satisfy the needs of data management and
document management

— The (Ijstabase-style core is mostly complete (even has support for NULLs in
XML!!

— The document keyword querying features are still in the works — shows in
the order-preserving default model



XQuery’s Basic Form

Has an analogous form to SQL’s
select..from..where..group by..order by blocks

Semantics: bind nodes (or node sets) to variables; operate
over each legal combination of bindings; produce a set of
nodes

“FLWOR” statement:

for {iterators that bind variables}
Tet {collections}

where {conditions}

order by {order-conditions}

return {output constructor}
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lteration (“for-loops”) in XQuery

A series of (possibly nested) for statements binding the results of XPaths to
variables

for $root in document(“http://my.org/my.xml”),

$sub in $root/rootElement,
$sub2 in $sub/subElement, ..

* Essentially, a pattern to be matched, producing a "binding tuple"

* For each binding, evaluate the where clause and possibly output results
constructed using return template

« document() or doc() function specifies an input file as a URI

— Old version was “document”; now “doc” but it depends on your XQuery
implementation
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Two XQuery Examples

<root-tag> {
for $p in document(“dblp.xml1”)/dblp/proceedings,
$yr in $p/yr
where $yr = “1999”
return <proc> {$p} </proc>
} </root-tag>

for $1 in document(“dblp.xm1”)/dblp/inproceedings][
author/text() = “John Smith”]
return <smith-paper>
<title>{ $i/title/text() }</title>
<key>{ $i/@key }</key>
{ $i/crossref }
</smith-paper>
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Nesting in XQuery

Nesting XML trees is a very common operation

In XQuery, it’s easy — put a subquery in the return clause
where you want things to repeat!

for $u in document(“dblp.xml1”)/universities
where $u/country = “USA”
return <ms-theses-99>
{ $u/title } {
for $mt in $u/../mastersthesis
where $mt/year/text() = “1999” and
return $mt/title }
</ms-theses-99>
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Collections and Aggregation in XQuery

* In XQuery, many operations return collections
— XPaths, sub-XQueries, functions over these, ...

— The let clause assigns the collection to a variable

* Aggregation simply applies a function from collections to
values (very elegant compared to SQL!)

lTet $allpapers := document(“dblp.xml1”)/dblp/article in
return <article-authors>

<count>{

fn:count(fn:distinct-values($allpapers/authors))
}</count>{
for $paper in doc(“dblp.xml1”)/dblp/article
let $pauth := $paper/author
return <paper> {$paper/title}
<count>{
fn:count($pauth)
}</count>
</paper>
}

</article-authors>
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Collections and Aggregation (2)

Unlike in SQL, we can compose aggregations and create new
collections from old:

<result> {

let $avgltemsSold := fn:avg(
for $order in document(“my.xml”)/orders/order
let $totalSold = fn:sum($order/item/quantity)
return $totalSold)

return $avgItemsSold

} </result>
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Sorting in XQuery

e SQL allows you to sort query output, with a special order by
clause

e XQuery borrows this idea

* In XQuery, what we order is the sequence of “result tuples”
output by the return clause:

for $x in document(“dblp.xml1”)/proceedings
order by $x/title/text()
return $x
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What If Order Doesn’t Matter?

By default:
— Relations in SQL are unordered

— Collections in XQuery are ordered

But, unordered queries are much faster to answer!

XQuery allows the user to say "don't worry about preserving
order here":

unordered {
for $x in (mypath)...

}
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Removing Duplicates

In XQuery, duplicate elimination is performed by a function
over a collection (returning another collection)

But since we have nodes with nested structure in XML, can do
duplicate removal according to (1) value or (2) node identifier

— Intuition from C++: (1) "strcmp(s1,s2) == 0" versus (2) "a == b"
— fn:distinct-values(collection): (1) remove by value

— fn:distinct-nodes(collection):(2) remove by node identifier
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Another Difference wrt SQL:
Metadata is Data in XQuery

Can get a node’s name by using node-name():

for $x in document(“dblp.xm1”)/dblp/*
return node-name($x)

Can construct elements and attributes using computed names:

for $x in document(“dblp.xml1”)/dblp/*,
$year in $x/year,
$title in $x/title/text(),

element node-name($x) {
attribute {“year-" + $year} { $title }

}
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XQuery Summary

Very flexible and powerful language for XML

— Clean and orthogonal: can always replace a collection with an
expression that creates collections

— DB and document-oriented (we hope)

— The core is relatively clean and easy to understand

Turing Complete — we’ll talk more about XQuery functions soon
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