ECS 165B: Database System Implementation
Lecture 19

UC Davis
May 10, 2010

Based on slides due to Zack Ives

Class Agenda

e Last time:

— Results of mid-course evaluation
— Querying XML

* Today:

— Views and XML Views of Relations

* Reading:

— none

Views and Relational Encodings of XML

Recall XQuery

“FLWOR” statement:
for {iterators that bind variables}
let {collections}
where {conditions}
order by {order-conditions}

return {output constructor}
XQuery is ~SQL-like, but cleaner and more orthogonal

Based on paths and binding tuples, with collections and trees
as its first-class objects

See www.w3.org/TR/xquery/ for more details on the language

XQuery Works Well with Schema,
and Validates Against It (Incl. Keys)

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:complexType name=“ThesisType'>
<xsd:attribute name=“key" type="xsd:string"/>

<xsd:sequence>
<xsd:element name=“author” type=“xsd:string"/>

<xsd:element name=“school” type=“xsd:string”/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name=“mastersthesis" type=“ThesisType'>

<xsd:key name=“mtid">
<xsd:selector xpath=".”/> <xsd:field xpath="@key" />
</xsd:key>
<xsd:keyref name=“schoolRef” refer=“schoolid">
<xsd:selector xpath=*./school”/> <xsd:field
xpath="./text("/>
</xsd:keyref>
</xsd:element>

</xsd:schema>

Alternate Data Representations
XQuery enables us to go from XML = XML
... or XML = XHTML, or XML = text

... In SQL, we go relations = relations

What about relations = XML and XML = relations?

Let’s start with XML =» XML, relations = relations

Views in SQL and XQuery

* Recall: a view is essentially a named query

 We use the name of the view instead of the query (treating it as if it were

the relation it returns)

SQL:

CREATE VIEW V(A,B,C) AS
SELECT A,B,C FROM R
WHERE R.A = “123”

XQuery:

declare function V() as element(content)* {
for $r in doc(“R”)/root/tree,
$a in $r/a, $b in $r/b, $c in $r/c

where $a = “123”

return <content>{%$a, $b, $cl}</content>

Using the views:

SELECT *

FROM V, R

WHERE V.B = 5
AND V.C = R.C

for $v in v()/content,

$r in doc(“r”)/root/tree
where $v/b = $r/b

return $v

What’s Useful about Views

Providing security/access control
— We can assign users permissions on different views

— Can select or project so we only reveal what we want!

Can be used as relations in other queries

— Allows the user to query things that make more sense

Describe transformations from one schema (the base relations)
to another (the output of the view)

— The basis of converting from XML to relations or vice versa

— This will be incredibly useful in data integration, discussed soon...

Allow us to define recursive queries

Materialized vs. Virtual Views

* Avirtual view is a named query that is actually re-computed
every time — view predicate replaced by its definition in query:

CREATE VIEW V(A,B,C) AS

SELECT A,B,C FROM R
WHERE R.A = “123”

SELECT *

FROM V, R
ERE V.B = 5 AND V.C = R.C

A materialized view is one that is computed once and its
results are stored as a table

— Think of this as a cached answer

— These are incredibly useful!

— Techniques exist for using materialized views to answer other queries

— Materialized views are the basis of relating tables in different schemas

Views Should Stay Fresh

Views should behave, from the user's perspective, exactly like
source relations

For materialized views, there’s an association that must be
maintained:

— If tuples change in the base relation, they should change in the view

— If tuples change in the view, that should reflect in the base relation(s)

10

View Maintenance and the View Update Problem

* There exist algorithms to incrementally recompute a

materialized view when the base relations change

 We can try to propagate view changes to the base relations

— However, there are lots of views that aren’t easily updatable:

R |A

1

2

— We can ensure views are updatable
by enforcing certain constraints (e.g., no aggregation),
but this limits the kinds of views we can have

S

B|C

4

3

RS

NN PD

N(ININ[(N|D

wlh|lwlh|N

delete?

11

Views as a Bridge between Data Models

Despite XML's apparent flexibility, the following claim holds:

“XML can’t represent anything that can’t be expressed in in the relational
model”

If this is true, then we must be able to represent XML in relations

Store a relational view of XML
(or create an XML view of relations)

12

A View as a Translation between
XML and Relations

 We'll discuss techniques from the most-cited paper in this

area (Shanmugasundaram et al), but there are many more
(Fernandez et al.,, ...)

 Technology already transferred into commercial systems
— XPERANTO at IBM Research was incoporated into DB2 v9

— Current versions of SQL Server and Oracle have XML support too

13

Issues in Mapping Relational < XML

We know the following:
— XML is a tree
— XML is semi-structured
* There’s some structured “stuff”
* There is some unstructured “stuff”
Issues relate to describing XML structure, particularly parent/
child in a relational encoding
— Relations are flat

— Tuples can be “connected” via foreign-key/primary-key links

14

The Simplest Way to Encode a Tree: Edge Tables

* Suppose we had:

<tree id="“0">
<content 1d="1">
<sub-
content>XYZ
</sub-content>
<i-content>14
</1-content>
</content>
</tree>

e Where we have no
IDs, invent values

What are the shortcomings of this approach?

Edge

key | Tabel type |value |parent
0 tree ref ~ -

1 content ref - 0

2 sub-content | ref - 1

3 1-content ref - 1

4 - str XYZ 2

5 - int 14 3

15

Florescu/Kossmann Improved Edge Approach

* Consider order, typing; separate the values

Edge

parent ord | Tabel flag | target
- 1 tree ref |0

0 1 content ref |1

1 1 sub-content |str |vZ2

1 1 1-content int |v3

vint

vid

value

v3

14

Vstring

vid

value

V2

XYZ

16

How Do You Reconstruct the XML Using SQL?

* Assume we know the structure of the XML tree (we’ll see how
to avoid this later)

* We can compute an “XML-like” relation using “outer unions” —
a technique pioneered in XPERANTO system @ IBM

— lIdea: if we take two non-union-compatible expressions, pad each with
NULLS, we can UNION them together

— Let’s see how this works...

17

A Relation that Mirrors the XML Hierarchy

<tree 1d=“0">
<content id="1">
<sub-content>XYzZ</sub-content>
<i-content>14</i-content>
</content>
</tree>

* Qutput relation, encoding this tree, would look like:

rLabel | rid | rord | clabel | cid| cord sLabel sid | sord | str|int

tree 0 1 - - - - - - - -
- 0 1 |content| 1 1 - - - - -
- 0 1 - 1 1 |sub-content| 2 1 - -
- 0 1 - 1 1 - 2 1 | Xyz| -
- 0 1 - 1 2 i-content 3 1 - -
- 0 1 - 1 2 - 3 1 - | 14

18

A Relation that Mirrors the XML Hierarchy

<tree 1d=“0">

</tree>

<content id=“1">

<sub-content>XYzZ</sub-content>
<i-content>14</i-content>
</content>

* Qutput relation, encoding this tree, would look like:

rLabel | rid | rord | clabel | cid| cord sLabel sid|sord | str|int

tree 1 - - - - - - - -
- 0 content |1 1 - - - - -
- 0 1 - sub-content 1 - -
- 0 1 - 1 - 2 1™ xyz| -
- 0 1 - 1 2 i-content 3 1 - -
- 0 1 - 2 - 3 S—L 14

19

A Relation that Mirrors the XML Hierarchy

<tree 1d=“0">
<content id=“1">

<sub-content>XYzZ</sub-content>
<i-content>14</i-content>

</content>
</tree>

* Colors are representative of separate SQL queries...

rLabel | rid rOrdi clabel 7cid
- 0 content |1
- 0 1 -
- 0 1 - 1

c0rdi sLabel 7sid

sord | str | int
1 - - - - -
sub-content 1 - -~
2 i-content 3 1 - -

SQL for Computing The Relation

Edge

parent ord | Tabel flag | target
- 1 tree ref |0

0 1 content ref |1

1 1 sub-content |str |[v2

1 1 i-content int |v3

Root:
select E.label AS rLabel, E.target AS rid, E.ord AS rord,

vint

vid

value

v3

14

Vstring

vid

value

V2

XYZ

For each sub-portion we preserve the keys (target, ord) of the ancestors

null AS cLabel, null AS cid, null AS cord, null AS subord,

null AS sid, null AS str, null AS int
from Edge E

where parent IS NULL

rLabel

rid

rord

clabel

cid

cord

sLabel

sid

sord

str

int

tree

0

1

21

SQL for Computing This Relation

For each sub-portion we preserve the keys (target, ord) of
the ancestors

Root:

select E.label AS rLabel, E.target AS rid, E.ord AS rord,
null AS cLabel, null AS cid, null AS cord, null AS subord,
null AS sid, null AS str, null AS 1int

from Edge E

where parent IS NULL

First-level children:

select null AS rLabel, E.target AS rid, E.ord AS rord,
El.label AS cLabel, El.target AS cid, El.ord AS coOrd, null
AS .

from Edge E, Edge E1

where E.parent IS NULL AND E.target = El.parent

22

The Rest of the Queries

Grandchild:

select null as rLabel, E.target AS rid, E.ord AS rord, null
AS cLabel, El.target AS cid, El.ord AS cord, E2.label as
sLabel, E2.target as sid, E2.ord AS sord, null as ..

from Edge E, Edge E1l, Edge E2

where E.parent IS NULL AND E.target = El.parent AND
El.target = E2.parent

Strings:

select null as rLabel, E.target AS rid, E.ord AS rord, null
AS cLabel, El.target AS cid, El.ord AS cOrd, null as
sLabel, E2.target as sid, E2.ord AS sOrd, vi.val AS str,
nhull as int

from Edge E, Edge E1, Edge E2, Vvint Vi

where E.parent IS NULL AND E.target = El.parent AND
El.target = E2.parent AND Vi.vid = E2.target

Integers: similar to above

23

Finally...

 Union them all together:
(select E.label as rLabel, E.target AS rid, E.ord AS rord,

from Edge E

where parent IS NULL)
UNION (

select null as rLabel, E.target AS rid, E.ord AS rord,
El.label AS cLabel,

El.target AS cid, El.ord AS cord, null as ..

from Edge E, Edge E1

where E.parent IS NULL AND E.target = El.parent
) UNION (

) GNION (

)
* Then another module will add the XML tags, and we’re done!

24

“Inlining” Techniques

Folks at Wisconsin noted we can exploit the “structured”
aspects of semi-structured XML

— If we’re given a DTD, often the DTD has a lot of required (and often
singleton) child elements

* Book(title, author*, publisher)
— Recall how normalization works in a traditional DBMS:

* Decompose until we have everything in a relation determined by
the keys

e ...But don’t decompose any further than that

— Shanmugasundaram et al. try not to decompose XML beyond the point
of singleton children

25

Inlining Techniques
e Start with DTD, build a graph representing structure

tree ?

\ @id

*

content

.

sub-content i-content

e The edges are annotated with ? ("optional"), * ("zero or
more"

26

Building Schemas

* Now, they tried several alternatives that differ in how they
handle elements w/multiple ancestors

— Can create a separate relation for each path
book author

— Can create a single relation for each element \ /

— Can try to inline these name

* For tree examples, these are basically the same

— Combine non-set-valued things with parent
— Add separate relation for set-valued child elements

— Create new keys as needed

27

Schema for Our Example

TheRoot(rootID)
Content(parentID, 1d, @id)
Sub-content(parentID, varchar)
I-content(parentID, 1nt)

e |f we suddenly changed DTD to

<IELEMENT content(sub-content*, i-content?)
what would happen?

28

XQuery to SQL

* Inlining method needs external knowledge about the schema

— Needs to supply the tags and info not stored in the tables

 We can actually directly translate simple XQuery into SQL over
the relations — not simply reconstruct the XML

29

An Example

for $X in document(“mydoc”)/tree/content
where $X/sub-content = “Xyz”
return $X

* The steps of the path expression are generally joins

— ... Except that some joins are eliminated by the fact we’ve inlined
subelements

e Let’stry it over the schema:
TheRoot (rootID)
Content(parentID, 1d, @id)
Sub-content(parentID, varchar)
I-content(parentID, 1nt)

Summary: XML Views of Relations

We’ve seen that views are useful things
Allow us to store and refer to the results of a query
We’ve seen an example of a view that changes from XML to

relations — and we’ve even seen how such a view can be
posed in XQuery and “unfolded” into SQL

— Current versions of the major DBMSs support XML and (fragments of)
XQuery this way

31

