ECS 165B: Database System Implementation
Lecture 2

UC Davis
March 31, 2010

Acknowledgements: design of course project for this class borrowed from CS
346 @ Stanford's RedBase project, developed by Jennifer Widom, and used with
permission. Slides based on earlier ones by Raghu Ramakrishnan, Johannes
Gehrke, Jennifer Widom, Bertram Ludaescher, and Michael Gertz.

Class Agenda

* Last time:
— Logistics and course overview
— Introduction to the DavisDB project
— Start file and buffer management review (Chapter 9 of textbook)

* Today:
— Finish file and buffer management review
— File and buffer management in DavisDB

* Reading:
— Chapter 9 of Ramarkrishnan & Gehkre
— (or Chapter 11 of Silberschatz et al.)

Announcements

Teaching assistant:
Mingmin Chen (michen@ucdavis.edu)
Office hours: Wednesdays, 11:00-11:50am, 055 Kemper Hall

Please send your team requests to Mingmin by email (or edit the
online spreadsheet) by end of day today!

- We will finalize teams and set up your subversion repositories tomorrow

Project overview posted!

http://www.cs.ucdavis.edu/~green/courses/ecs165b/project.html

Project Part | will be posted to web page tomorrow, due 4/11

File and Buffer Management, Part Il

Disk Space Management

Lowest layer of DBMS software manages space on disk

Higher levels call upon this layer to:
— allocate / de-allocate a page

— read / write a page

Request for a sequence of pages must be satisfied by
allocating the pages sequentially on disk! Higher levels don't
need to know how this is done, or how free space is managed

— Simplifying assumption in DavisDB: no requests for sequences; pages
are accessed one at a time

— Part of student extension? (Part 5 of project)

Buffer Management in a DBMS

Page Requests from Higher Levels

BUFFER POOL

/_/1

disk page

/_//1

free frame

MAIN MEMORY

<

DISK —————) choice of frame dictated
m by replacement policy
—

e Data must be in RAM for DBMS to operate on it!
* Table of <frameNo, pageNo> pairs is maintained

When a Page is Requested...

If requested page is not in pool:
— Choose a frame for replacement
— If frame is dirty, write it to disk

— Read requested page into chosen frame
Pin the page and return its address

If requests can be predicted (e.g., sequential scans), pages can
be pre-fetched several pages at a time

— Again, opportunity ignored in DavisDB for simplicity

More on Buffer Management

Requestor of page must unpin it, and indicate whether page
has been modified

— Dirty bit is used for this

Page in pool may be requested many times

— A pin count is used. A page is a candidate for replacement iff its pin
count=0

Concurrency control and recovery may entail additional |/O
when a frame is chosen for replacement. (Write-Ahead Log

protocol; more later...)

— No concurrency control or recovery in DavisDB (good topic for student
extension!)

Buffer Replacement Policy

Frame is chosen for replacement by a replacement policy:
— Least-recently-used (LRU), Clock, MRU, etc
— DavisDB uses LRU

Policy can have big impact on # of I/O's; depends on the
access pattern

Sequential flooding: nasty situation caused by LRU + repeated
page scans

— # buffer frames < # pages in file means each page request causes an
/0. MRU much better in this situation (but not in all situations, of

course).

DBMS vs. OS File System

OS does disk space and buffer management; why not let the
OS manage these tasks?

Differences in OS support: portability issues
Some limitations, e.g., files can't span disks

Buffer management in DBMS requires ability to:

— pin a page in buffer pool, force a page to disk (important for
implementing concurrency control and recovery)

— adjust replacement policy, and pre-fetch pages based on access
patterns in typical DB operations

Record Formats: Fixed-Length

F1l F2 F3 F4
«—L1— L2 L3 L4
Base address (B) Address = B+L1+L2

Information about field types same for all records in a file;
stored in system catalogs

Finding i'th field requires scan of record

DavisDB uses fixed-length records

Record Formats: Variable-Length

 Two alternative formats (# fields is fixed):

F1 F2 F3 F4
4 $ $ $ $
Fiold f Fields Delimited by Special Symbols
Count
F1 F2 F3 F4
N U <A \
Array of Field Offsets

» Second offers direct access to i'th field, efficient storage of
nulls (special don't know value); small directory overhead

Page Formats: Fixed-Length Records

Slot 1 Slot 1

Slot 2 Slot 2

Space

o S

R — R L s—

Slot M

1)...

0

1

1

M

number
PACKED of records

M ..
UNPACKED, BITMAP of slots

321

‘\

number

* Record id = <page id, slot #>. In first alternative, moving
records for free space management changes record id; may

not be acceptable.

Page Formats: Variable-Length Records

Rid = (i, N
Page i
Rid = i1|2i
(Rid = illl%
ul

\

20 16 | 24 N Pointer

to start
N 2 1 # slots O(; ?rzz

space

SLOT DIRECTORY

* Can move records on page without changing record id; so,
attractive for fixed-length records too!

Files of Records

Page or block is OK when doing I/0O, but higher levels of DBMS
operate on records, and files of records.

FILE: a collection of pages, each containing a collection of
records. Must support:

— insert/delete/modify record
— read a particular record (specified using record id)

— scan all records (possibly with some conditions on the records to be
retrieved)

Unordered (Heap) Files

Simplest file structure contains records in no particular order

As file grows and shrinks, disk pages are allocated and de-
allocated

To support record-level operations, we must:
— keep track of the pages in a file

— keep track of free space on pages

— keep track of the records on a page

There are many alternatives for keeping track of this

Heap File Implemented as a List

N N N Yy

Data Data Data F1_111 Pages
/) Page Page Page
TN TN N Y
Data Data Data N :
\) Page Page Page Pages with
Free Space

A AL S A/

 The header page id and heap file name must be stored
someplace

* Each page contains two "pointers" (page ids) plus data

Heap File Using a Page Directory

| Data
Header Page 1

Page

Data
Page 2

Data
DIRECTORY Page N

The entry for a page can include the number of free bytes on
the page

The directory is a collection of pages; linked list
implementation is just one alternative

— Much smaller than linked list of all heap file pages!

System Catalogs

For each index:

— structure (e.g., B+-tree) and search key fields

For each relation

— name, file name, file structure (e.g., heap file)
— attribute name and type, for each attribute

— index name, for each index

— integrity constraints

For each view:

— view hame and definition

Plus statistics, authorization, buffer pool size, etc

— Catalogs are themselves stored as relations!

Example: System Catalog Table for Attributes

attr name
attr name
rel name
type
position
sid

name
login

age

gpa

fid

fname

sal

rel name
Attribute_Cat
Attribute_Cat
Attribute_Cat
Attribute_Cat
Students
Students
Students
Students
Students
Faculty
Faculty
Faculty

type
string
string
string
integer
string
string
string
integer
real
string
string
real

position
1

W, Ok WP, B WD

Summary

Disks provide cheap, non-volatile, but slow storage

— Random access, but cost depends on location of page on disk;
important to arrange data sequentially to minimize seek delays

e DavisDB isn't very smart about this

Buffer manager brings pages into RAM
— Page stays in RAM until released by requestor

— Written to disk when frame chosen for replacement (which is some
time after requestor releases the page)

— Choice of frame to replace based on replacement policy
— Tries to pre-fetch several pages at a time

* DavisDB doesn't worry about this

Summary (Continued)

File layer keeps track of pages in a file, and supports
abstraction of a collection of records.

— Pages with free space identified using linked list or directory structure
(similar to how pages in file are kept track of)

Indexes support efficient retrieval of records based on the
values in some fields

Catalog relations store information about relations, indices,
and views. (Information that is common to all records in a
given collection.)

File and Buffer Management in DavisDB

File and Buffer Management in DavisDB

Disk Space Manager (given) Buffer Manager (given)

OS File System

Paged File Component (Provided)

Paged File Component has two functions:
— provides in-memory buffer pool of pages/frames

— performs low-level file I/O at the granularity of pages

Overview will be posted tomorrow:

http://www.cs.ucdavis.edu/~green/courses/ecs165b/pageFile.html

For now, see Doxygen docs:

http://www.cs.ucdavis.edu/~green/courses/ecs165b/docs/annotated.html

Where it all begins: PageFileManager...

PageFileManager

* Your code will create one instance of this class

 Manages the buffer pool of in-memory pages
— allocate/de-allocate "scratch" pages
— coordinates with file handle objects to bring pages to/from disk

— uses LRU replacement policy

* Used to create/open/close/remove page files

— Returns FileHandle object to manage pages within a file

FileHandle

 Returned by PageFileManager, used to:
— allocate/de-allocate pages in the file
— pages identified by logical page number rather than physical offset
— mark page as dirty
— force page to disk

— scan pages in file

Coding Tip: Don't Forget to Free Memory!

DBMS is a long-running process; memory leaks are
unacceptable

Every new must have a matching delete

With some coding discipline, can avoid many problems

— When possible, put new and delete close together in the code, so that
a human can easily verify correctness

— Memory must always be freed, even when handling exceptional
conditions

Use tools like valgrind to track down memory leaks

We will check for memory leaks when grading your projects

Coding Tip: Pinning/Unpinning Pages

* Whenever you access a page, you must remember to unpin it after
you're done (else you leak the page)

* Best coding practice: do both tasks nearby, ideally in the same
function, so that correctness can easily be verified

FileHandle* file;
PageHandle page;

ReturnCode code = file->getFirstPage(&page);
if (code == RC_OK) {
// .. do stuff with page ..
file->unpinPage(page.pageNo) ;

e Same goes for memory allocation/de-allocation

— make it easy to match every new with its corresponding delete

