ECS 165B: Database System Implementation
Lecture 20

UC Davis
May 12, 2010

Portions based on slides due to Zack Ives

Class Agenda

* Last time:
— Views and Relational Encodings of XML (1)

* Today:
— Views and Relational Encodings of XML (2)
— Cookbook Session: Query Evaluation Plans

* Reading:

— none

Views and Relational Encodings of XML (2)

The Simplest Way to Encode a Tree: Tree Tables

* Suppose we had:

<tree id="“0">
<content 1d="1">
<sub-
content>XYZ
</sub-content>
<i-content>14
</1-content>
</content>
</tree>

e Where we have no
IDs, invent values

What are the shortcomings of this approach?

Tree

key | Tabel type |value |parent
0 tree ref ~ -

1 content ref - 0

2 sub-content | ref - 1

3 1-content ref - 1

4 - str XYZ 2

5 - int 14 3

Florescu/Kossmann Improved Tree Approach

* Consider order, typing; separate the values

Tree vint
parent |ord |label flag | target vid | value
- 1 tree ref |0 vi |14

0 1 content ref |1

1 1 sub-content |str |vZ2 vstring

1 1 1-content int |v3 vid | value

v2 XYZ

A Relation that Mirrors the XML Hierarchy

<tree 1d=“0">
<content id="1">
<sub-content>XYzZ</sub-content>
<i-content>14</i-content>
</content>
</tree>

* Qutput relation, encoding this tree, would look like:

rLabel | rid | rord | clabel | cid| cord sLabel sid | sord | str|int

tree 0 1 - - - - - - - -
- 0 1 |content| 1 1 - - - - -
- 0 1 - 1 1 |sub-content| 2 1 - -
- 0 1 - 1 1 - 2 1 | Xyz| -
- 0 1 - 1 2 i-content 3 1 - -
- 0 1 - 1 2 - 3 1 - | 14

“Inlining” Techniques

* Folks at Wisconsin noted we can exploit the “structured”
aspects of semi-structured XML

— If we’re given a DTD, often the DTD has a lot of required (and often
singleton) child elements

* Book(title, author*, publisher)
— Recall how normalization works in a traditional DBMS:

* Decompose until we have everything in a relation determined by
the keys

e ...But don’t decompose any further than that

— Shanmugasundaram et al. try not to decompose XML beyond the point
of singleton children

XML -> Relations; XQuery -> SQL?

Once we've encoded the XML in relational form, would like to
query it! (Using XQuery, of course)

For limited fragments of XQuery, this is possible, via
translation to SQL

Details of translation depend heavily on the encoding scheme

We'll look at 2 examples: one for XPERANTO-style encoding,
and one for an inlined encoding

Running Example for XQuery -> SQL Translation

XQuery:

for $X in document(“mydoc”)/tree/content
where $X/sub-content = “Xyz”

return $Xx

Source document:
<tree 1d=“0">
<content id="1">
<sub-content>XYz</sub-content>
<i-content>14</i-content>
</content>
</tree>

Query output:

<content id="1">
<sub-content>XYZ</sub-content>
<i-content>14</i-content>

</content>

EXPERANTO-Style Encoding: Input

Source document:
<tree 1d=“0">
<content id="1">
<sub-content>XYZ</sub-content>
<i-content>14</i-content>

</content>
</tree>
rLabel | rid | rord | clabel | cid | cord sLabel sid|sOord | str|int
tree 0 1 - - - - - - - -
- 0 1 |content| 1 1 - - - - -
- 0 1 - 1 1 sub-content| 2 1 - -
- 0 1 - 1 1 - 2 1 XyYz| -
- 0 1 - 1 2 i-content 3 1 - -
- 0 1 - 1 2 - 3 1 - 14

EXPERANTO-Style Encoding: Output

Query output:

<content id=“1">
<sub-content>XYZ</sub-content>
<i-content>14</i-content>

</content>
rlabel | rid| rord cLabel cid| cord | str|int
content | 1 1 - - - - -
- 1 1 sub-content | 2 1 - -
- 1 1 - 2 1 | XYyz| -
- 1 2 i-content 3 1 - -
- 1 2 - 3 1 - 14

EXPERANTO-Style Encoding: Query

XQuery:

for $X in document(“mydoc”)/tree/content
where $X/sub-content = “Xyz”

return $X

sSQL:

select T5.clabel as rlabel, T5.cid as rid, T5.cOord as rord,
T5.sLabel as cLabel, T5.sid as cid, T5.s0rd as cord,
T5.str as str, T5.int as int

from Tree T1l, Tree T2, Tree T3, Tree T4, Tree T5

where Tl.rLabel = "tree" and

T2.rid = Tl.rid and T72.r0ord = T1l.rord and T2.clabel = "content" and

T3.rid = T2.rid and T73.rord = T2.rord and T73.cid = T2.cid and
T3.cord = T2.cord and T3.label = "sub-content" and

T4.rid = T3.rid and ... T4.sid = T3.sid and T4.str = "Xyz" and

T5.rid = T2.rid and ... and T75.cOrd = T2.cord

EXPERANTO-Style Encoding: Query (2)

select |[T5.clabel as rlabel, ..., T5.int as int
from Tree T1l, Tree T2, Tree T3, Tree T4, Tree T5
where | T1l.rLabel = "tree" and

T2.rid = Tl.rid and ... and T2.clabel = "content" and

T5.rid = T1l.rid and ... and T5.cid = T2.cid

rLabel | rid | rord | clabel | cid | cord sLabel sid | sOrd | str|int
tree 0 1 - - - - - - - -
- 0 1 content

i-content

Inlined Encoding: Input Tables

Source document:
<tree id="“0">
<content id="1">
<sub-content>XYzZ</sub-content>
<i-content>14</1i-content>
</content>
</tree>

Suppose we know from DTD or XML-Schema that:
— root node is "tree";
— "content" node only occurs under "tree";

— "content" node contains ID attribute "id" and exactly two children: "sub-content", with
text data, and "i-content", with integer-valued data

Can encode the tree as follows:

Tree Content

id___ parentiD |id | ord | sub-content | i-content.
0 0 1 O XYZ 14

14

Inlined Encoding: Query

XQuery:

for $X in document(“mydoc”)/tree/content
where $X/sub-content = “XYZ”

return $X

SQL:

select Content.*

from Tree, Content

where Tree.id = Content.parentID and
content.sub-content = "Xyz"

Output is another inline-encoded relation:

parentiD | id | ord | sub-content | i-content
0 1 O XYZ 14

2-way join, instead of a 5-
way join!

Summary: Relational "Views" of XML

We’ve seen that views are useful things
Allow us to store and refer to the results of a query

We’ve seen a examples of relational "views" of XML, and SQL
translations of XQuery over such views

— Current versions of the major DBMSs support XML and (fragments of)
XQuery this way

— Challenge: limiting the number of joins required in the translated
queries

16

And Now For Something Completely Different

Query Engine Sneak Preview and
Cookbook Session

DavisDB, Part 4: Query Engine

Culmination of the project: you'll implement a query engine
for a fragment of SQL

— Queries: select-from-where

— Updates: insert into, delete from, update

As in Part 3, systemParser handles the front-end, you
implement the back-end: a class called QueryEngine

Relatively low bar for getting full credit
— Optimization not required
— Starter code and architectural template provided

Opportunities for extra credit

— e.g., Query optimizer

Query Engine API

e (cf. the Doxygen docs...)

How to Implement an Execution Engine?

sname

01id=100 AND rating>5

index nested loops &
sid=sid

file scan index scan

Reserves Sailors

Physical query plan

277

C++ implementation

How to Implement an Execution Engine?

T[sname T[sname

IQueryOperator

Obid=100 AND rating>5 Opid=100 AND rating>5

=>
IQueryOperator
index nested loops
&sid=sid &sid=sid
IQueryOperator IQueryOperator
file scan index scan
Reserves Sailors Reserves Sailors

Physical query plan C++ implementation

IQueryOperator: an Abstract Interface

What is an "abstract interface" in C++?

A base class with only abstract virtual methods

virtual ReturnCode getNextRecord(char* data) = O;

Other classes inherit from this base class ("implement" the
interface) and fill in the method implementations

One technical exception: virtual destructor must have
implementation, but can be empty

virtual ~IQueryoperator() {};

What's a Virtual Method?

C++ versus Java: in Java, all methods are virtual!

class A { classB: A{
void foo() { printf("A foo"); } void foo() { printf("B foo"); }
virtual void bar() { printf("A bar"); } virtual void bar() { printf("B bar"); }
} }
void biz(A* a, B* b) { OUTPUT of call to biz(a,b):
A* a, B* b; A* c=(A*)b;
a->foo(); A foo
a->bar(); A bar
b->foo(); B foo
b->bar(); B bar
c->foo(); A foo
c->bar(); B bar
}

QUESTION: why declare destructors virrtual?

Why Use Interfaces in the Execution Engine?

* An operator shouldn't have to know about all the different
physical operators that might be below it in the tree!

T[sname

IQueryOperator

Obid=100 AND rating>5

IQueryOperator

&

sid=sid

IQueryOperator

Reserves Sailors

ProjectionOperator :
Msname IQueryOperator
IQueryOperator
SelectionOperator:
o IQueryOperator
bid=100 AND rating>5
IQueryOperator
IndexNestedLoops:
&sid=sid IQueryOperator
IQueryOperator
FileScan: IndexScan:
IQueryOperator . lQueryOperator
Reserves Sailors

IQueryOperator

* (cf. code in Xcode...)

"Canonical" Execution Plans

* Given a select-from-where query, will only be required to
build a "canonical" execution plan

— A plan fully determined by the order of relations in the "from" clause
and availability of indices

e Extra credit: build an optimizer to explore other plans

— Based on heuristics or statistics

Putting it All Together

e Let's go to the videotape!

