ECS 165B: Database System Implementation
Lecture 21

UC Davis
May 14, 2010

Class Agenda

e Last time:
— Views and Relational Encodings of XML (2)
— DavisDB Part 4 Sneak Preview

 Today:

— DavisDB Part 4 Overview and Architectural Cookbook Session

* Reading:
— Ch 15 of Ramakrishnan and Gehrke

Announcements

Grades for Part 2 have been sent out

Reminder: Part 3 due Sunday @ 11:59pm

Don't forget to turn off any printf debugging statements
before submitting (they interfere with shell output)

— At this point, you should be using a debugger, not printfs, anyway!

Project Part 4: out tonight

DavisDB, Part 4: Query Evaluation Engine

DavisDB, Part 4: Query Engine

Culmination of the project: you'll implement a query engine
for a fragment of SQL consisting of four commands:

— Queries: select-from-where

— Updates: insert into, delete from, update

As in Part 3, systemParser handles the front-end, you
implement the back-end: a class called QueryEngine

Relatively low bar for getting full credit
— Optimization not required
— Starter code and architectural template provided

Opportunities for extra credit

— e.g., Query optimizer

The Select Command: Syntax

select <attrName>, ... , <attrName>
from <relName>, ..., <relName>

[where <attrName> <cmpOp> <attrorvalue> and ... and

<attrName> <cmpOp> <attroOorvalue>] ;

Each attribute name <attrNname> must be fully-qualified
— e.g.,, select R.A, S.B ratherthan select A,B

No self-joins (no duplicates in <re1Name> list)

where clause is optional
— <cmpOp>oneof<, >, =, <>, <=, >=
— <attrorvalue> either a fully-qualified attribute name, or a constant:
e quoted string like "abc", "xyz", ...
* integer like 2, -1

» float like 2.0,-1.7 (floats must contain a decimal point)

The Select Command: Semantics

* Execute the query, according to standard SQL semantics

* Parser calls QueryEngine: :select to execute:

ReturnCode select(
int nAttributes, const RelationAttribute attributes[],
int nRelations, const char* relations|[],
int nConditions, const Condition conditions|[]

);
 Must check that query typechecks wrt the database schema

* Print results to console output using SystemPrinter, as in
print command from Part 3

* How to implement? We'll discuss in a moment...

The Select Command: Example

The Insert Command: Syntax and Semantics

insert into <relName> values (<value>, ..., <value>) ;

e Values specified as in other commands:
— quoted string like "abc", "xyz", ...
— integer like 2, -1

— float like 2.0, -1.7 (floats must contain a decimal point)

* Semantics: calls QqueryEngine: :insert to perform the insertion

ReturnCode insert(const char®* relName, int nvalues,
const Typedvalue values[]);

* Must verify that it typechecks wrt the database schema; don't
forget to update indices too!

The Delete Command: Syntax

delete from <relName>
[where <attrName> <cmpOp> <attrorvalue> and ... and
<attrName> <cmpOp> <attrorvalue>] ;

e Each attribute name <attrName> must be fully-qualified

- where clause is optional
— <cmpOp>oneof<, >, =, <>, <=, >=
— <attrorvalue> either a fully-qualified attribute name, or a constant:
* quoted string like "abc", "xyz", ...
* integer like 2, -1

* float like 2.0, -1.7 (floats must contain a decimal point)

The Delete Command: Semantics

* Invokes QueryEngine: :remove to delete all tuples matching
the specified conditions (or all tuples, if none specified)

ReturnCode remove(const char* relName,
int nConditions,
const Condition conditions[]);

* Must verify that query typechecks wrt schema; don't forget to
update indices!

* Looks a bit like a selection query, with a deletion operation on
top? Bear this in mind when designing execution engine...

The Update Command: Syntax

update <relName>
set <attrName> = <attrorvalue>
[where <attrName> <cmpOp> <attrorvalue> and ... and
<attrName> <cmpOp> <attroOorvalue>] ;

e Each attribute name <attrname> must be fully-qualified

« where clause is optional
— <cmpOp>oneof<, >, =, <>, <=, >=
— <attrorvalue> either a fully-qualified attribute name, or a constant:
* quoted string like "abc", "xyz", ...
* integer like 2, -1

* float like 2.0, -1.7 (floats must contain a decimal point)

The Update Command: Semantics

e QueryEngine: :update invoked to perform the specified
update for any records matching the selection conditions

ReturnCode update(const char* relName,
const RelationAttribute* Teft,
const AttributeOrvalue* right,

int nConditions, const Condition conditions[]);

* Again, must verify that it typechecks wrt schema, and update
indices too

* Like delete, looks a lot like a selection query, but with an
update operation on top...

Query Engine API

e (cf. the Doxygen docs...)

How to Implement an Execution Engine?

* You are free to do this any way you like!
— Modulo a few requirements we'll mention in a bit...

 We'll give sample code and interfaces to give you a starting point
— You are free to use these, or ignore them in favor of your own design

* Provided:

— |lQueryOperator, a generic interface for operators in the tree

— Implementations of two operators: FileScanOperator and
ProjectionOperator

— Some skeleton code in QueryEngine showing how to construct a plan

How to Implement an Execution Engine?

sname

01id=100 AND rating>5

index nested loops &
sid=sid

file scan index scan

Reserves Sailors

Physical query plan

277

C++ implementation

How to Implement an Execution Engine?

T[sname T[sname

IQueryOperator

Obid=100 AND rating>5 Opid=100 AND rating>5

=>
IQueryOperator
index nested loops
&sid=sid &sid=sid
IQueryOperator IQueryOperator
file scan index scan
Reserves Sailors Reserves Sailors

Physical query plan C++ implementation

IQueryOperator: an Abstract Interface

What is an "abstract interface" in C++?

A base class with only pure virtual methods

virtual ReturnCode getNextRecord(char* data) = O;

Other classes inherit from this base class ("implement" the
interface) and fill in the method implementations

One technical exception: virtual destructor must have
implementation, but can be empty

virtual ~IQueryoperator() {};

What's a Virtual Method?

C++ versus Java: in Java, all methods are virtual!

class A { classB: A{
void foo() { printf("A foo"); } void foo() { printf("B foo"); }
virtual void bar() { printf("A bar"); } virtual void bar() { printf("B bar"); }
} }
void biz(A* a, B* b) { OUTPUT of call to biz(a,b):
A* a, B* b; A* c=(A*)b;
a->foo(); A foo
a->bar(); A bar
b->foo(); B foo
b->bar(); B bar
c->foo(); A foo
c->bar(); B bar
}

QUESTION: why declare destructors virrtual?

Why Use Interfaces in the Execution Engine?

* An operator shouldn't have to know about all the different
physical operators that might be below it in the tree!

T[sname

IQueryOperator

Obid=100 AND rating>5

IQueryOperator

&

sid=sid

IQueryOperator

Reserves Sailors

ProjectionOperator :
Msname IQueryOperator
IQueryOperator
SelectionOperator:
o IQueryOperator
bid=100 AND rating>5
IQueryOperator
IndexNestedLoops:
&sid=sid IQueryOperator
IQueryOperator
FileScan: IndexScan:
IQueryOperator . lQueryOperator
Reserves Sailors

IQueryOperator

e (cf. the Doxygen docs...)

Join Operator Implementation

* You will be required to implement at least two join
algorithms, nested loops join and index nested loops join

* TIP: these can be implemented using just one join operator
(that doesn't even know which join it's implementing)!

‘ JoinOperator ‘

JoinOperator
sid=sid &

&

sid=sid

FileScanOperator FileScanOperator | FjleScanOperator IndexScanOperator

Reserves Sailors Reserves Sailors

Nested Loops Join Index Nested Loops Join

WARNING: IQueryOperator is Not Complete!

* You will probably need to tweak IQueryoOperator to suit your
needs, or introduce new interfaces extending
IQueryoOperator will special capabilities

— e.g., index nested loops join needs to communicate KEYS to right child,
via something more than getNextTuple() alone... something like:

openScan(condition); getNextTuple()*; closeScan()

 Could, e.g., introduce an 1ScanOperator extending
(inheriting from) IQueryoOperator to add such methods

— to be implemented by BOTH FileScanOperator, AND
IndexScanOperator --- so that JoinOperator does not need to
care about whether an index is present or not!

TIP: Make Operators for Delete and Update, Too!

* Will again require a tweak to IQueryOperator, as RecordIbDs
need to be returning along with records: e.g., change

virtual ReturnCode getNextRecord(char* data) = O;
to

virtual ReturnCode getNextRecord(Record* record) = 0;

 What should beTeteOperator or UpdateOperator return for
getNextRecord()? What should their schemas be?

— Doesn't really matter... the results won't be printed

 What is the RecordiID of the result of a join?

— Doesn't really matter... there won't be any operators above the join
that care about the RecordID (update operations don't use joins)

TIP: a Selection Operator Simplification

Using several operators instead of one doesn't necessarily
cost much in terms of efficiency

Don't worry about implementing a selection operator that can
take conjunctions of conditions ‘

Obid=100

e.g, O1bid=100 AND rating>5 . ‘
instead of justdo

0-Pa.ting>5

"Canonical" Execution Plans

* Requirement: however you build your execution engine, will
need to produce plans that work (a) with indices, using Index
Nested Loops Join, and (b) without indices (Nested Loops Join)

* Given a select-from-where query, will only be required to
build a "canonical" execution plan of your own design

— A plan fully determined by the order of relations in the "from" clause
and availability of indices

— Writeup should describe what kinds of plans you produce

Extra Credit Opportunities
Small amount of extra credit: figure out some heuristics and use
them to produce more efficient plans for queries/updates

— Must document what you've done in the writeup

Small amount of extra credit: exceptionally clean architecture and
code

Large amount of extra credit: implement a full-blown System R style
guery optimizer

— Variable amount of credit, will depend on how much you do

— Should consider different join orders and do some sort of cost estimation
to compare plans

— Will require maintaining and using cardinality statistics, at a minimum

