ECS 165B: Database System Implementation
Lecture 25

UC Davis
May 24, 2010

Acknowledgments: some slides due to Ramakrishnan and Gehrke

Class Agenda

* Last time:
— Query Evaluation Engine Cookbook Session
— Overview of Column Stores

 Today:

— Deductive Databases

* Reading:
— Chapter 24 of Ramakrishnan and Gehrke
(Section 4.7 of Silberschatz et al)

Deductive Databases

Motivation

e SQL, as we've seen it so far, cannot express some queries:

— Are we running low on any parts needed to build a ZX600 sports
car?

— What is the total component and assembly cost to build a ZX600
at today's part prices?

e (Aside: how can you prove such statements?)

— Using tools from finite model theory, such as Ehrenfeucht—
Fraissé games (ECS 289F)

* Can we extend SQL to cover such queries?

— Yes, by adding recursion...

Datalog

e SQL queries can be read as follows:

“If some tuples exist in the from tables that satisfy the
where conditions, then the select tuple is in the answer.

* Datalogis a toy query language that has the same if-then
flavor:

— New: The answer table can appear in the from clause, i.e.,
be defined recursively

— Prolog style syntax is commonly used.

trike

Example N

wheel frame
/\ . A
spoke seat pedal
1N
rim tube

* Find all components of a trike?

 We can write a relational algebra
(RA) query to compute the answer
on the given instance of Assembly

e But thereis no RA (or SQL-92)
query that computes the answer
on all Assembly instances

Assembly

part

subpart

number

trike

wheel

trike

frame

frame

seat

frame

pedal

wheel

spoke

wheel

tire

tire

rim

tire

tube

R PPN RERERPRBREPE|W

The Problem with RA and SQL-92

Intuitively, we must join Assembl1y with itself to deduce
that trike contains spoke and tire.

— Takes us one level down Assemb1y hierarchy.

— To find components that are one level deeper (e.g.,
rim), need another join.

— To find all components, need as many joins as there
are levels in the given instance!

For any RA expression, we can create an Assembly
instance for which some answers are not computed

— by including more levels than the number of joins in the
expression!

A Datalog Query that Does the Job

Comp(Part, Subpt) :- Assembly(Part, Subpt, Qty)
Comp(Part, Subpt) :- Assembly(Part, Part2, Qty),

t\\\ f Comp(Part2, Subpt) ///

head of rule implication body of rule

Can read the second rule as follows:

“For all values of Part, Subpt and Qty,
if there is a tuple (Part, Part2, Qty) in Assembly
and a tuple (Part2, Subpt) in Comp,
then there must be a tuple (Part, Subpt) in Comp”

Using a Rule to Deduce New Tuples

Comp(Part, Subpt) :- Assembly(Part, Subpt, Qty)

Comp(Part, Subpt) :- Assembly(Part, Part2, Qty),
Comp(Part2, Subpt)

Each rule can be viewed as a template: by assigning
constants to the variables in such a way that each atom in
body is a tuple in the corresponding relation, we identify a
tuple that must be in the head relation.

— By setting Part=trike, Subpt=wheel, Qty=3 in the first rule, we can
deduce that the tuple (trike, wheel) is in the relation Comp

— This is called an inference using the rule

— Given a set of tuples, we apply the rule by making all possible
inferences with these tuples in the body

Example: Deducing New Tuples

Comp(Part, Subpt)
Comp(Part, Subpt)

:- Assembly(Part, Subpt, Qty)

:- Assembly(Part, Part2, Qty),
Comp(Part2, Subpt)

* For any instance of Assembly, we can compute all Comp tuples by
repeatedly applying the two rules

Part
trike

trike
Comp tuples after

: trike
applying rules once:

trike
wheel

wheel

Subpt
spoke
tire
seat
pedal
rim

tube

Comp tuples after
applying rules twice:

Part
trike
trike
trike
trike
wheel
wheel
trike
trike

Subpt
spoke
tire
seat
pedal
rim
tube
rim

tube

Datalog versus SQL Notation

 Don’t let the syntax of Datalog fool you: a collection of
Datalog rules can be rewritten in SQL syntax, provided
recursion is allowed

WITH RECURSIVE comp(Part, Subpt) AS (
(SELECT Part, Subpt
FROM Assembly)
UNION
(SELECT A.Part, C.Subpt
FROM Assembly A, Comp C
WHERE A.Subpt=C.Part)

)
SELECT Part, Subpt FROM Comp

e Current commercial DBMSs support a limited amount of
recursive queries, via syntax like above

Defining the Semantics: Fixpoints

Definition: Let f: D > D. Avaluevin D is a fixpoint of fif f(v)=v.

Example 1: consider the function double from integers to
integers which multiplies its argument by 2. Then 0 is a fixpoint
of double (in fact, the only fixpoint).

Example 2: consider a function double+, which is applied to a

set of integers and returns a set of integers, and works like:
double+({1,2,5}) ={2,4,10} U {1,2,5} ={1,2,4,5,10}. Then

— The set of all integers is a fixpoint of double+

— The set of all even integers is another fixpoint of double+; it
is smaller than the first fixpoint

Least Fixpoint Semantics for Datalog

* Definition: the least fixpoint of a function fis a fixpoint v of
f such that every other fixpoint of fis < v.

* In general, there may be no least fixpoint (we could have no
fixpoint, or two minimal fixpoints, neither of which is

smaller than the other)

* If we think of a Datalog program as a function that is applied
to a set of tuples and returns another set of tuples, this

function (fortunately!) always has a least fixpoint.

Aside: Other Ways of Defining Datalog's Semantics

e Besides the least fixpoint semantics, datalog can be defined in
two other ways:

— proof-theoretic: a tuple is in the answer iff it can be "proven" using the
source database and the rules of the program

— model-theoretic: view the rules as a collection of logical assertions;
the result of the program is the smallest model, where a model is a
database instance (including both source and derived relations) that
satisfies the assertions

* These turn out to be equivalent to the fixpoint-theoretic
semantics!

Extending Datalog with Negation

Big(Part) :- Assembly(Part, Subpt, Qty), Qty > 2,
not Small(Part)
Small(Part) :- Assembly(Part, Subpt, Qty),
not Big(Part)

If rules contain not there may not be a least fixpoint.
Consider the Assembly instance; trike is the only part that
has 3 or more copies of some subpart. Intuitively, it should be
in Big, and it will be if we apply Rule 1 first.

— But we have Small(trike) if Rule 2 is applied first!

— There are two minimal fixpoints for this program: Bi1g is empty in one,
and contains trike in the other (and all other parts are in Small in
both fixpoints).

Need a way to choose the intended fixpoint!

The Simplest Fix: Stratification

T depends on S if some rule with T in the head contains S

or (recursively) some predicate that depends on S, in the
body.

Stratified program: If T depends on not S, then S cannot

depend on T (or not T).

If a program is stratified, the tables in the program can be
partitioned into strata:

— Stratum 0: All source database tables.

— Stratum |I: Tables defined in terms of tables in Stratum | and lower
strata.

— If TdependsonnotS, Sis in lower stratum than T.

Fixpoint Semantics for Stratified Programs

The semantics of a stratified program is given by one of
the minimal fixpoints, which is identified by the following
operational definition:

— First, compute the least fixpoint of all tables in Stratum
1. (Stratum O tables are fixed.)

— Then, compute the least fixpoint of tables in Stratum 2
(considering Stratum 1 as "source tables"); then the Ifp
of tables in Stratum 3, and so on, stratum-by-stratum.

Note that Big/smal1 program is not stratified.

Aside: Beyond Stratified Semantics

Not all programs are stratified; can we give semantics to those
too?

Yes, using e.g., stable model semantics, or the well-founded
semantics

Cool topics, but beyond the scope of what we're covering

Prof. Ludaescher did some of the seminal work on the latter
(well-founded semantics) as a PhD student

Complexity of Datalog with Stratified Semantics

* In databases, have to distinguish between two kinds of
complexity: data complexity and query complexity

— data complexity: query is fixed, database may vary in size
— query complexity: database is fixed, query may vary in size

— (combined complexity: both may vary in size)

* Queries are small in practice, hence data complexity is the
one we worry about most

e Fact: can evaluate stratified Datalog programs in polynomial
time (data complexity)

P=NP? is a Database Theory Problem

Here's a mind-blowing result from a field now known as
descriptive complexity:

Suppose you have a total order < on the underlying domain of
the database, and can use < in queries

— goes without saying in practical applications, but the logicians don't
take this at all for granted

Theorem [Vardi]: Datalog with stratified semantics with <
captures the polynomial-time computable queries

So, to show P I= NP, "just" have to prove that SAT is not
expressible in Datalog!

Evaluation of Datalog Programs

Repeated inferences: When recursive rules are repeatedly

applied in the naive way, we make the same inferences in
several iterations.

Unnecessary inferences: Also, if we just want to find the
components of a particular part, say wheel, computing the
fixpoint of the Comp program and then selecting tuples
with wheel in the first column is wasteful, in that we
compute many irrelevant facts.

Avoiding Repeated Inferences

* Seminaive Fixpoint Evaluation: Avoid repeated inferences by
ensuring that when a rule is applied, at least one of the body facts
was generated in the most recent iteration. (Which means this
inference could not have been carried out in earlier iterations.)

— For each recursive table P, use a table delta P to store the P tuples
generated in the previous iteration.

— Rewrite the program to use the delta tables, and update the delta tables
between iterations.

Comp(Part, Subpt) :- Assembly(Part, Part2, Qty),
delta_Comp(Part2, Subpt).

e Just like "delta rules" technique for incremental view maintenance

