ECS 165B: Database System Implementation
Lecture 3

UC Davis
April 2, 2010

Acknowledgements: design of course project for this class borrowed from CS
346 @ Stanford's RedBase project, developed by Jennifer Widom, and used with
permission. Slides based on earlier ones by Raghu Ramakrishnan, Johannes
Gehrke, Jennifer Widom, Bertram Ludaescher, and Michael Gertz.

Class Agenda

* Last time:
— Finish file and buffer management review
— File and buffer management in DavisDB

 Today:
— Quick look at DavisDB Record Manager component
— Start review of indexing

* Reading:
— Chapter 8 of Ramarkrishnan & Gehkre
— (or Chapter 12 of Silberschatz et al.)

Announcements

Project Part | has been posted; due Sunday, 4/11 at 11:59pm

http://www.cs.ucdavis.edu/~green/courses/ecs165b/recordManager.html

Please read all documentation carefully, and start early!

Teams have been finalized; still waiting on support@ for
subversion repositories

Code distribution available from /home/cs165b/DavisDB

NOTE: some updates made there this afternoon

DavisDB Extra Credit Opportunity

 We've already found and fixed a bug in the page file
component since posting the code last night

* There will undoubtedly be more (immature codebase...)

 EXTRA CREDIT OPPORTUNITY: 5% boost to your team's score
for Part 1 for each new bug in the page file component you
discover and fix yourself!

(Up to 10% boost / team; first team to the bug gets the credit)

Email your bug reports and fixes to the class mailing list

Quick Tour of Record Manager Component

Provides classes and methods for managing files of records
(aka heap files)

Built on top of Page File component, described last time

You have to implement four main classes, supplied with the
code distribution:

— RecordManager

— RecordFileHandle

— Record

— RecordFileScan

Don't change any methods in the interface we've given (you
can add new methods)
— Changing the interface will break automated tests

Coding Tip: Don't Forget to Mark Pages Dirty!

* Be diligent about getting this right from the beginning, else
you risk introducing tough-to-track-down bugs

FileHandle* file;
PageHandle page;

ReturnCode code = file->getFirstPage(&page);
if (code == RC_OK) {
// .. modify contents of page ..
file->markDirty(page.pageNo) ;
file->unpinPage(page.pageNo);

Coding Tip: Assertions are Very Useful

#include <assert.h>

void computeSomething() {
assert (.. preconditions ..);

. do some work ..

assert (.. postconditions ..);

assert will cause a crash if the condition is not satisfied.
This is exactly what you want to happen!

Coding Tip: Assertions in Page File Manager

Page file manager makes heavy use of runtime assertions;
some of these will catch your bugs!

ReturnCode PageFileManager::allocateBlock(FileHandle*
fileHandle, int pageNo, char** data) {
// first, look for a free block, while also computing
// the LRU unpinned block to use as backup
int iLru = -1;
long epochLru = LONG MAX;
for (uint i = 0; i < PF BUFFER SIZE; i++) {
assert(pageBlocks [i].isConsistent());

If this assertion fires, it means
} your code wrote past the end of
a page block!

Coding Tip: Assertions in Page File Manager

assert (pageBlocks [i1].isConsistent());

page block of size
PF_PAGE_SIZE =

4096 bytes
isconsistent() checks for
modification of the guard bytes
guard bytes .

following the page block

Review: Indexing

Reading: Chapter 8 of Ramarkrishnan & Gehkre
(or Chapter 12 of Silberschatz et al.)

Alternative File Organizations

Many alternatives exist, each ideal for some situations, and not so
good for others

Unordered heap files (aka record files in DavisDB): suitable when
typical access is a file scan retrieving all records

Sorted files: best if records must be retrieved in some order, or only
a range of records is needed

Indices: data structures to organize records via trees or hashing

— Like sorted files, they speed up searches for a subset of records, based on
values in certain search key fields

— Updates are much faster than in sorted files

Indices

* Anindex on a file speeds up selections on the search key fields
for the index

— Any subset of the fields of a relation can be the search key for an index
on the relation

— Search key is not the same as key (minimal set of fields that uniquely
identify a record in a relation)

* Anindex contains a collection of data entries, and supports
efficient retrieval of all data entries k* with a given key value k

Alternatives for Data Entry k* in Index

Three alternatives:

1. The actual data record with key value k

2. <k, id of record with search key value k>

3. <k, list of ids of records with search key value k>

Choice of alternative for data entries is orthogonal to the

indexing technique used to locate data entries with a given
key value k

— Examples of indexing techniques: B+ trees (DavisDB, part 2), hash-
based structures

— Typically, index contains auxiliary information that directs searches to
the desired data entries

Alternatives for Data Entries (Contd.)

e Alternative 1: the record itself

— If used, index structure is really a file organization for data records
(instead of a heap file or sorted file)

— At most one index on a given collection of data records can use
Alternative 1. (Otherwise, data records are duplicated, leading to
redundant storage and potential inconsistency.)

— |If data records are very large, # of pages containing data entries is
high. Implies size of auxiliary information in the index is also large,

typically.

Alternatives for Data Entries (Contd.)

* Alternatives 2 and 3 (record id / list of record ids)

— Data entries typically much smaller than data records. So, better than
Alternative 1 with large data records, especially if search keys are
small.

— Alternative 3 more compact than Alternative 3, but leads to variable-
sized data entries even if search keys are of fixed length

Index Classification

* Primary vs. secondary: if search key contains primary key, then
called primary index

e (Clustered vs. unclustered: if order of data records is the same
as (or "close to") the order of data entries, then index is called
clustered

— Alternative 1 is always a clustered index; in practice, converse usually
holds too (since sorted files are rare)

— Afile can be clustered on at most one search key

— Cost of retrieving data records through index varies greatly based on
whether index is clustered or not!

Clustered vs. Unclustered Index

* Suppose Alternative 2 is used for data entries, and that the
data records are stored in a heap file

— To build clustered index, first sort the heap file (with some free space
on each page for future insertions)

— Overflow pages may be needed for insertions. (Thus, order of data
records is "close to", but not identical to, the sort order.)

Index entries

CLUSTERED direct search for UNCLUSTERED
data entries
Data entries Data entries <~ =7

/A |\ N\ (Index File)

SR X
/4 NN aatie) /LN [NPT

Data Records Data Records

Hash-Based Indices

* Good for equality selections

— Index is a collection of buckets. Bucket = primary page plus zero or
more overflow pages

— Hash function h: h(r) = bucket in which record r belongs. h looks at the
search key fields of r.

e |f Alternative 1 is used, the buckets contain the data records
themselves; otherwise, they contain <key, record id> or <key,
record id list> pairs

B+ Tree Indices

Non-leaf L
Pages $ iihdg l7

— / 7\ /r \ /W\ /W\
Leaf --- «—> --- «—> --- «> ---
Pages

* Leaf pages contain data entries, and are chained (prev + next)

Non-leaf pages contain index entries and direct searches

index entry

Example of a B+ Tree

ROO&

Entries < @

/

17

N]

/ <\

Entries > @

27

30

/

i

* 3*

| 7% | 8 14*

16*

227

247

27*

29*

33*

34*

38*

39*

Find 28*? 29*? (> 15 and < 30)*?

Insert/delete: find data entry in leaf, then change it.
— Need to adjust parent sometimes

— Change sometimes bubbles up the tree

Costs and Benefits of Different Schemes

* Cost model: ignore CPU costs, for simplicity

— B: number of data pages

— R: number of records per page

— D: (average) time to read or write a disk page

* Measuring number of page |/Os ignores gains of pre-fetching
a sequence of pages; thus, even |/O cost is only approximated

* Average-case analysis; based on several simplistic
assumptions

— But, good enough to show the overall trends!

Comparing File Organizations

Heap files (random order; insert at end-of-file)
Sorted files, sorted on <age, sal>
Clustered B+ tree file, Alternative 1, search key <age, sal>

Heap file with unclustered B+ tree index on search key <age,
sal>

Heap file with unclustered hash index on search key <age,
sal>

Operations to Compare

Scan: fetch all records from disk
Equality search

Range selection

Insert a record

Delete a record

Assumptions in Our Analysis

* Heap files:
— Equality selection on key; exactly one match

e Sorted files:

— Files compacted after deletions

* Indices:
— Alternatives 2, 3: data entry size = 10% size of record
— Hash: no overflow buckets
— B+ tree: 67% occupancy (this is typical)

* Implies file size = 1.5 data size

Cost of Operations

(a) Scan (b) (c) Range (d) Insert |(e) Delete
Equality

(1) Heap

(2) Sorted

(3) Clustered

(4) Unclustered
Tree index

(5) Unclustered
Hash index

» Several assumptions underlie these (rough) estimates!

Cost of Operations

(a) Scan (b) Equality [(c) Range (d) Insert (e) Delete
(1) Heap BD 0.5BD BD 2D Search
+D
(2) Sorted BD Dlog 2B Dlog 2B + |Search Search
matches |+ BD +BD
(3) Clustered |1.5BD Dlog r 1.5B |Dlog r 1.5B |Search Search
+ # matches |+ D +D
(4) Unclustered |BD(R+0.15) |D(1 + Dlog v 0.15B |D(3 + Search
Tree index log 0.15B) |+ # matches |log F 0.15B) [+ 2D
(5) Unclustered |BD(R+0.1 |2D BD 4D Search
Hash index 25) + 9D

B =#data pages; R = # of records per page; D = (average) time to
read or write a disk page

