ECS 165B: Database System Implementation
Lecture 4

UC Davis
April 5, 2010

Acknowledgements: based on slides by Raghu Ramakrishnan and Johannes
Gehrke. Presentation of RCS based on slides by David Matuszek.

Class Agenda

* Last time:
— Quick look at DavisDB Record Manager component
— Start review of indexing

 Today:
— Project-related logistics: subversion, code submission
— Finish indexing review; tree-structured indices in depth

* Reading:
— Chapter 10 of Ramarkrishnan & Gehkre
— (or Chapter 12 of Silberschatz et al.)

Announcements

Subversion repositories have been created, but with incorrect
team assignments (Excel snafu)... ® Will be fixed soon...

Code submission procedure has been finalized

Textbook on reserve in Shields starting tomorrow

Office hours tomorrow @11am (TJ), Wednesday @11am
(Mingmin)

Why use revision control systems?

* Scenario 1:
— Your program is working
— You change "just one thing"
— Your program breaks
— You change it back

— Your program is still broken — why?

* Has this ever happened to you?

Why use revision control systems (2)?

Your program worked well enough yesterday

You made a lot of improvements last night...

— but you haven't gotten them to work yet

You need to turn in your program now

Has this ever happened to you?

Revision control for teams

* Scenario:
— You change one part of a program -- it works
— Your co-worker changes another part -- it works
— You put them together -- it doesn’t work

— Some change in one part must have broken something in the other
part

— What were all the changes?

Revision Control for Teams (2)

* Scenario:
— You make a number of improvements to a class

— Your co-worker makes a number of different improvements to the same
class

* How can you merge these changes?

Revision control systems

* Arevision control system (aka version control system) does
these things:

— Keeps multiple (older and newer) versions of source code, headers, etc
— Requests comments regarding every change
— Displays differences between versions

— Detect/resolve conflicts

 Many systems out there: sccs, rcs, cvs, Visual SourceSafe, svn
— Most popular in the past: cvs

— Most popular nowadays: svn

Subversion commands

svn checkout (aka svn co) - check out code from repository
svn add - add a new file/directory to the repository

svn delete - delete a file/directory from the repository

svn commit - commit local changes to repository

svn diff - view differences wrt current or old version

svn status - see local changes

svn info - get info about repository

svn help - list all commands

See http://subversion.tigris.org

Graphical front-ends: TortoiseSVN (Windows), RapidSVN (cross-
platform), Subclipse (eclipse plug-in)

— Visual diffs, easier browsing of history, ...

Logistics: Repository Access

Follow directions on
http://www.cs.ucdavis.edu/~green/courses/ecs165b/project.html

[green@pcl2 ~]$ svn co file:///home/csl65b/CSIF-Proj/
csl65b-0/svn/trunk/DavisDB

A DavisDB/RecordFileHandle.h
DavisDB/FileHandle.h
DavisDB/PageFileManager.cpp
DavisDB/RecordManager.cpp

>

DavisDB/submit.sh

DavisDB/CMakelLists.txt

DavisDB/writeup.txt

DavisDB/Common.h
greenfpcl2 ~]$

— PP P P

Logistics: Repository Access

* Must tell repository about new files!

[green@pcl2 ~/DavisDB]$ svn add Foo.cpp Foo.h

A Foo.cpp

A Foo.h

[green@pcl2 ~/DavisDB]$ svn commit -m ""
Adding Foo.cpp

Adding Foo.h

Transmitting file data
Committed revision 84.

* To get changes from your teammate:

[chenmi@pcl0 ~/DavisDB]$ svn update

Logistics: Submitting Your Homework

[green@pcl2 DavisDB]S ./submit.sh
Usage: submit.sh <hw#>
where <hw#> is a number in the range [1,5]

Submits your project component by tagging the current version

of your subversion repository as the submitted version. It may

be executed multiple times for the same <hw#>. The most recently
submitted version is the one that will be used for grading (and

its timestamp will determine any late penalties). This script

must be run from your subversion DavisDB directory.

After submitting, the script will also run a test build of your project,
by checking out the submitted version into a temporary directory and
executing "cmake ." then "make".

Logistics: Submitting Your Homework (2)

[green@pcl2 DavisDB]$./submit.sh 1
Submitting HW1...

Submission successful.

Running a test build on the submitted code...

Test build successful.

Indexing Review

Sparse vs. Dense Indices

Not described in R&G; see Silberschatz et al

Dense index: has search key value and data entry for every
record in the file

— fast record lookup

Sparse index: has search key values for only some records in
the file (but all data entries)

— less space, reduced maintenance costs

— essentially, Alternative 1

Cost of Operations

(a) Scan (b) Equality |(c) Range (d) Insert (e) Delete
(1) Heap BD 0.5BD BD 2D Search
+D
(2) Sorted BD Dlog 2B Dlog2B + |[Search Search
matches |+ BD +BD
(3) Clustered |1.5BD Dlog r 1.5B [Dlog r 1.5B |Search Search
+ # matches |+ D +D
(4) Unclustered |BD(R+0.15) |D(1 + Dlog £ 0.15B [D(3 + Search
Tree index log £ 0.15B) |+ # matches |log £ 0.15B) |+ 2D
(5) Unclustered |BD(R+0.1 (2D BD 4D Search
Hash index 25) +2D

B = # data pages; R = # of records per page; D = (average) time to
read or write a disk pages

High-order bit: no one file organization is uniformly superior in all
situations

You will need to memorize this entire matrix for Quiz #1

— Just kidding

Tree-Structured Indices

reading: Chapter 10 of Ramakrishnan and
Gehrke / Chapter 12 of Silberschatz et al

Introduction

As for any index, 3 alternatives for data entries k*
— Data record with key value k
— <k, rid of data record with search key value k>

— <k, list of rids of data records with search key k>

Choice is orthogonal to the indexing technique used to locate
data entries k*

Tree-structured indexing techniques support both range
searches and equality searches

ISAM ("Indexed sequential access method"): static structure; B
+-tree: dynamic, adjusts gracefully under insertions and
deletions

Range Searches

* "Find all students with gpa > 3.0"

— If data is in sorted file, do binary search to find first such student, then
scan to find others

— Cost of binary search can be quite high

 Simple idea: create an "index" file

\
AN

L\ \

Page 1 Page 2 Page 3 Page N Data File

— can do binary search on (smaller) index file!

ISAM

index entry
I

PO K 1 I:’1 Kol P 2 YRS K m
+ Index file may stilﬁ&be quite large. But we can
apply the idea repeatedly!
Non-leaf é/YL
Pages o
Leaf _ f 2
-9 s e e
Pages) } N A 4
[] Overflow --—----->___| N T
page .]
Primary pages

* Leaf pages contain data entries.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Comments on ISAM owe “ref

% File creation: Leaf (data) pages allocated index Pages

sequentially, sorted by search key; then index
pages allocated, then space for overflow pages.

Overflow pages

% Index entries: <search key value, page id>; they
“direct” search for data entries, which are in leaf pages.

% Search: Start at root; use key comparisons to go to leaf.
Cost « log N ; F =# entries/index pg, N = # leaf pgs

% Insert: Find leaf data entry belongs to, and put it there.

% Delete: Find and remove from leaf; if empty overflow
page, de-allocate.

+ Static tree structure: inserts/deletes affect only leaf pages.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Example ISAM Tree

<+ Each node can hold 2 entries; no need for
‘next-leaf-page’ pointers. (Why?)

Root —&a.
40
20 33 51 63
10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

After Inserting 23%, 48%, 41%, 42*%

Root —a.
Index L 40 S
Pages ,x////// \\\\\\\\\ﬁ&
20| | 33 51 63
, \

Leaf 10* ‘ 15* 20* 27* 33* | 37* 40* | 46* 51* 55* 63* 97*
Pages \ \

v v
Overflow 23" 48" | 417
Pages)«

42*

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

... Then Deleting 42%, 51%, 97*

Root ——=a.
40
20 33 51 63
10* 15* 20* 27* 33* 37* 40* 46* 55* 63*
23* ‘ 48* | 41*

* Note that 517 appears in index levels, but not in leaf!
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

B+ Tree: Most Widely Used Index“e*te:

+ Insert/delete at log N cost; keep tree height-
balanced. (F =fanout, N =# leaf pages)

% Minimum 50% occupancy (except for root). Each
node contains d <= m <= 2d entries. The
parameter d is called the order of the tree.

% Supports equality and range-searches efficiently.

/ N

eI —

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Index Entries
(Direct search)

Data Entries
("Sequence set")

Example B+ Tree

+ Search begins at root, and key comparisons
direct it to a leaf (as in ISAM).

< Search for 5%, 15%, all data entries >=24* ...

Root \

13 17 24 30

2* | 3* |5 | 7T 14*| 16* 19*| 20* | 22* 24* | 27* | 29* 33*| 34*| 38* | 39*

* Based on the search for 15, we know it is not in the tree!
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

B+ Trees in Practice

+ Typical order: 100. Typical fill-factor: 67%.
= average fanout = 133
+ Typical capacities:
= Height 4: 133* = 312,900,700 records
= Height 3: 133° = 2,352,637 records
+ Can often hold top levels in buffer pool:
= Level 1 = 1 page = 8 Kbytes
= Level2= 133 pages= 1 Mbyte
= Level 3 =17,689 pages = 133 MBytes

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

