
ECS	
 165B:	
 Database	
 System	
 Implementa6on	

Lecture	
 7	

UC	
 Davis 	
 	

April	
 12,	
 2010	

Acknowledgements:	
 por6ons	
 based	
 on	
 slides	
 by	
 Raghu	
 Ramakrishnan	
 and	

Johannes	
 Gehrke.	
 	
 	

Class	
 Agenda	

•  Last	
 6me:	

–  Dynamic	
 aspects	
 of	
 B+	
 Trees	

•  Today:	

–  Summary:	
 tree-­‐structured	
 indices	

–  Overview	
 of	
 query	
 evalua6on	

•  Reading	

–  Chapter	
 12	
 in	
 Ramakrishan	
 and	
 Gehrke	
 	
 	

–  (or	
 Chapter	
 13	
 in	
 Silberschatz,	
 Korth,	
 and	
 Sudarshan)	
 	

Announcements	

Expanded	
 set	
 of	
 tests	
 posted:	

	
 /home/cs165b/DavisDB/TestRM.cpp	

Page	
 file	
 manager	
 bugfixes:	

	
 /home/cs165b/DavisDB/PageFileManager.cpp,	
 h	

	
 /home/cs165b/DavisDB/FileHandle.cpp	

Have	
 you	
 done	
 an	
 svn	
 commit	
 lately?	

Summary:	
 Tree-­‐Structured	
 Indices	

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

Summary

Tree-structured indexes are ideal for range-
searches, also good for equality searches.
ISAM is a static structure.

Only leaf pages modified; overflow pages needed.
Overflow chains can degrade performance unless size
of data set and data distribution stay constant.

B+ tree is a dynamic structure.
Inserts/deletes leave tree height-balanced; log F N cost.
High fanout (F) means depth rarely more than 3 or 4.
Almost always better than maintaining a sorted file.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Summary (Contd.)

Typically, 67% occupancy on average.
Usually preferable to ISAM, modulo locking
considerations; adjusts to growth gracefully.
If data entries are data records, splits can change rids!

Key compression increases fanout, reduces height.
Bulk loading can be much faster than repeated
inserts for creating a B+ tree on a large data set.
Most widely used index in database management
systems because of its versatility. One of the most
optimized components of a DBMS.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

Summary

Tree-structured indexes are ideal for range-
searches, also good for equality searches.
ISAM is a static structure.

Only leaf pages modified; overflow pages needed.
Overflow chains can degrade performance unless size
of data set and data distribution stay constant.

B+ tree is a dynamic structure.
Inserts/deletes leave tree height-balanced; log F N cost.
High fanout (F) means depth rarely more than 3 or 4.
Almost always better than maintaining a sorted file.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Summary (Contd.)

Typically, 67% occupancy on average.
Usually preferable to ISAM, modulo locking
considerations; adjusts to growth gracefully.
If data entries are data records, splits can change rids!

Key compression increases fanout, reduces height.
Bulk loading can be much faster than repeated
inserts for creating a B+ tree on a large data set.
Most widely used index in database management
systems because of its versatility. One of the most
optimized components of a DBMS.

Overview	
 of	
 Query	
 Evalua6on	

Reading:	
 Chapter	
 12	
 of	
 Ramakrishnan	
 and	
 Gehrke	

(Chapter	
 13	
 of	
 Silberschatz	
 et	
 al)	
 	

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Overview of Query Evaluation

Chapter 12

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Overview of Query Evaluation

Plan: Tree of R.A. ops, with choice of alg for each op.
Each operator typically implemented using a `pull’
interface: when an operator is `pulled’ for the next output
tuples, it `pulls’ on its inputs and computes them.

Two main issues in query optimization:
For a given query, what plans are considered?

• Algorithm to search plan space for cheapest (estimated) plan.

How is the cost of a plan estimated?

Ideally: Want to find best plan. Practically: Avoid
worst plans!
We will study the System R approach.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Some Common Techniques

Algorithms for evaluating relational operators
use some simple ideas extensively:

Indexing: Can use WHERE conditions to retrieve
small set of tuples (selections, joins)
Iteration: Sometimes, faster to scan all tuples even if
there is an index. (And sometimes, we can scan the
data entries in an index instead of the table itself.)
Partitioning: By using sorting or hashing, we can
partition the input tuples and replace an expensive
operation by similar operations on smaller inputs.

* Watch for these techniques as we discuss query evaluation!

Recall:	
 "Evalua6on	
 Plan"	
 (ECS	
 165A)	

ECS 165A Database Systems 141

• A relational algebra expression may have many equivalent
expressions, e.g.,

πCName(σPrice>5000((CUSTOMERS ! ORDERS) ! OFFERS))

πCName((CUSTOMERS ! ORDERS) ! (σPrice>5000(OFFERS)))

Representation as evaluation plan (query tree):

o

o

CName

Price > 5000 CName

Price > 5000

CUSTOMERS ORDERS OFFERSORDERS

OFFERS

CUSTOMERS

Non-leaf nodes ≡ operations of relational algebra (with
parameters); Leaf nodes ≡ relations

• A relational algebra expression can be evaluated in many ways.
Annotated expression specifying detailed evaluation strategy
is called evaluation plan (includes, e.g., whether index is used,
algorithm for natural join, . . .)

• Among all semantically equivalent expression, the one with
the least costly evaluation plan is chosen. Cost estimate of
a plan is based on statistical information in the catalog (aka
data dictionary).

Database and Information Systems Group (DBIS) 8. Query Processing and Optimization

Recall:	
 "Annotated	
 Evalua6on	
 Plan"	
 (ECS	
 165A)	

ECS 165A Database Systems 162

Evaluation Plan

An evaluation plan for a query exactly defines what algorithm is
used for each operation, which access structures are used (tables,
indexes, clusters), and how the execution of the operations is
coordinated.

Example of Annotated Evaluation Plan

• Query: List the name of all customers who have ordered a
product that costs more than $5,000.

Assume that for both CUSTOMERS and ORDERS an index on
CName exists: I1(CName, CUSTOMERS), I2(CName, ORDERS).

index!nested loop join

block nested!loop join

I (CName, ORDERS) ORDERS

Price > 5000

I (CName, CUSTOMERS)1 2

CName (sort to remove duplicates)

2

pipeline pipeline

get tuples for tids of I

full table scan

OFFERS

Database and Information Systems Group (DBIS) 8. Query Processing and Optimization

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Overview of Query Evaluation

Chapter 12

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Overview of Query Evaluation

Plan: Tree of R.A. ops, with choice of alg for each op.
Each operator typically implemented using a `pull’
interface: when an operator is `pulled’ for the next output
tuples, it `pulls’ on its inputs and computes them.

Two main issues in query optimization:
For a given query, what plans are considered?

• Algorithm to search plan space for cheapest (estimated) plan.

How is the cost of a plan estimated?

Ideally: Want to find best plan. Practically: Avoid
worst plans!
We will study the System R approach.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Some Common Techniques

Algorithms for evaluating relational operators
use some simple ideas extensively:

Indexing: Can use WHERE conditions to retrieve
small set of tuples (selections, joins)
Iteration: Sometimes, faster to scan all tuples even if
there is an index. (And sometimes, we can scan the
data entries in an index instead of the table itself.)
Partitioning: By using sorting or hashing, we can
partition the input tuples and replace an expensive
operation by similar operations on smaller inputs.

* Watch for these techniques as we discuss query evaluation!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Statistics and Catalogs

Need information about the relations and indexes
involved. Catalogs typically contain at least:

tuples (NTuples) and # pages (NPages) for each relation.
distinct key values (NKeys) and NPages for each index.
Index height, low/high key values (Low/High) for each
tree index.

Catalogs updated periodically.
Updating whenever data changes is too expensive; lots of
approximation anyway, so slight inconsistency ok.

More detailed information (e.g., histograms of the
values in some field) are sometimes stored.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Access Paths
An access path is a method of retrieving tuples:

File scan, or index that matches a selection (in the query)

A tree index matches (a conjunction of) terms that
involve only attributes in a prefix of the search key.

E.g., Tree index on <a, b, c> matches the selection a=5
AND b=3, and a=5 AND b>6, but not b=3.

A hash index matches (a conjunction of) terms that
has a term attribute = value for every attribute in the
search key of the index.

E.g., Hash index on <a, b, c> matches a=5 AND b=3 AND
c=5; but it does not match b=3, or a=5 AND b=3, or a>5
AND b=3 AND c=5.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

A Note on Complex Selections

Selection conditions are first converted to conjunctive
normal form (CNF):
(day<8/9/94 OR bid=5 OR sid=3) AND
(rname=‘Paul’ OR bid=5 OR sid=3)
We only discuss case with no ORs; see text if you are
curious about the general case.

(day<8/9/94 AND rname=‘Paul’) OR bid=5 OR sid=3

Catalogs	
 in	
 DavisDB	

•  Two	
 catalog	
 tables:	
 relations	
 and	
 attributes!

!relations	
 :	
 rela6on	
 name,	
 tuple	
 length,	
 number	
 of	
 abributes,	

cardinality,	
 …	

!attributes:	
 rela6on	
 name,	
 abribute	
 name,	
 offset	
 in	
 tuple,	
 abribute	

type,	
 abribute	
 length,	
 index	
 name,	
 …	

•  More	
 details	
 when	
 Part	
 3	
 is	
 assigned	

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Statistics and Catalogs

Need information about the relations and indexes
involved. Catalogs typically contain at least:

tuples (NTuples) and # pages (NPages) for each relation.
distinct key values (NKeys) and NPages for each index.
Index height, low/high key values (Low/High) for each
tree index.

Catalogs updated periodically.
Updating whenever data changes is too expensive; lots of
approximation anyway, so slight inconsistency ok.

More detailed information (e.g., histograms of the
values in some field) are sometimes stored.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Access Paths
An access path is a method of retrieving tuples:

File scan, or index that matches a selection (in the query)

A tree index matches (a conjunction of) terms that
involve only attributes in a prefix of the search key.

E.g., Tree index on <a, b, c> matches the selection a=5
AND b=3, and a=5 AND b>6, but not b=3.

A hash index matches (a conjunction of) terms that
has a term attribute = value for every attribute in the
search key of the index.

E.g., Hash index on <a, b, c> matches a=5 AND b=3 AND
c=5; but it does not match b=3, or a=5 AND b=3, or a>5
AND b=3 AND c=5.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

A Note on Complex Selections

Selection conditions are first converted to conjunctive
normal form (CNF):
(day<8/9/94 OR bid=5 OR sid=3) AND
(rname=‘Paul’ OR bid=5 OR sid=3)
We only discuss case with no ORs; see text if you are
curious about the general case.

(day<8/9/94 AND rname=‘Paul’) OR bid=5 OR sid=3

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Statistics and Catalogs

Need information about the relations and indexes
involved. Catalogs typically contain at least:

tuples (NTuples) and # pages (NPages) for each relation.
distinct key values (NKeys) and NPages for each index.
Index height, low/high key values (Low/High) for each
tree index.

Catalogs updated periodically.
Updating whenever data changes is too expensive; lots of
approximation anyway, so slight inconsistency ok.

More detailed information (e.g., histograms of the
values in some field) are sometimes stored.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Access Paths
An access path is a method of retrieving tuples:

File scan, or index that matches a selection (in the query)

A tree index matches (a conjunction of) terms that
involve only attributes in a prefix of the search key.

E.g., Tree index on <a, b, c> matches the selection a=5
AND b=3, and a=5 AND b>6, but not b=3.

A hash index matches (a conjunction of) terms that
has a term attribute = value for every attribute in the
search key of the index.

E.g., Hash index on <a, b, c> matches a=5 AND b=3 AND
c=5; but it does not match b=3, or a=5 AND b=3, or a>5
AND b=3 AND c=5.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

A Note on Complex Selections

Selection conditions are first converted to conjunctive
normal form (CNF):
(day<8/9/94 OR bid=5 OR sid=3) AND
(rname=‘Paul’ OR bid=5 OR sid=3)
We only discuss case with no ORs; see text if you are
curious about the general case.

(day<8/9/94 AND rname=‘Paul’) OR bid=5 OR sid=3

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

One Approach to Selections

Find the most selective access path, retrieve tuples using
it, and apply any remaining terms that don’t match
the index:

Most selective access path: An index or file scan that we
estimate will require the fewest page I/Os.
Terms that match this index reduce the number of tuples
retrieved; other terms are used to discard some retrieved
tuples, but do not affect number of tuples/pages fetched.
Consider day<8/9/94 AND bid=5 AND sid=3. A B+ tree
index on day can be used; then, bid=5 and sid=3 must be
checked for each retrieved tuple. Similarly, a hash index on
<bid, sid> could be used; day<8/9/94 must then be checked.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Using an Index for Selections

Cost depends on #qualifying tuples, and
clustering.

Cost of finding qualifying data entries (typically small)
plus cost of retrieving records (could be large w/o
clustering).
In example, assuming uniform distribution of names,
about 10% of tuples qualify (100 pages, 10000 tuples).
With a clustered index, cost is little more than 100 I/Os;
if unclustered, upto 10000 I/Os!

SELECT *
FROM Reserves R
WHERE R.rname < ‘C%’

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Projection
The expensive part is removing duplicates.

SQL systems don’t remove duplicates unless the keyword
DISTINCT is specified in a query.

Sorting Approach: Sort on <sid, bid> and remove
duplicates. (Can optimize this by dropping unwanted
information while sorting.)
Hashing Approach: Hash on <sid, bid> to create
partitions. Load partitions into memory one at a
time, build in-memory hash structure, and eliminate
duplicates.
If there is an index with both R.sid and R.bid in the
search key, may be cheaper to sort data entries!

SELECT DISTINCT
R.sid, R.bid

FROM Reserves R

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

One Approach to Selections

Find the most selective access path, retrieve tuples using
it, and apply any remaining terms that don’t match
the index:

Most selective access path: An index or file scan that we
estimate will require the fewest page I/Os.
Terms that match this index reduce the number of tuples
retrieved; other terms are used to discard some retrieved
tuples, but do not affect number of tuples/pages fetched.
Consider day<8/9/94 AND bid=5 AND sid=3. A B+ tree
index on day can be used; then, bid=5 and sid=3 must be
checked for each retrieved tuple. Similarly, a hash index on
<bid, sid> could be used; day<8/9/94 must then be checked.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Using an Index for Selections

Cost depends on #qualifying tuples, and
clustering.

Cost of finding qualifying data entries (typically small)
plus cost of retrieving records (could be large w/o
clustering).
In example, assuming uniform distribution of names,
about 10% of tuples qualify (100 pages, 10000 tuples).
With a clustered index, cost is little more than 100 I/Os;
if unclustered, upto 10000 I/Os!

SELECT *
FROM Reserves R
WHERE R.rname < ‘C%’

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Projection
The expensive part is removing duplicates.

SQL systems don’t remove duplicates unless the keyword
DISTINCT is specified in a query.

Sorting Approach: Sort on <sid, bid> and remove
duplicates. (Can optimize this by dropping unwanted
information while sorting.)
Hashing Approach: Hash on <sid, bid> to create
partitions. Load partitions into memory one at a
time, build in-memory hash structure, and eliminate
duplicates.
If there is an index with both R.sid and R.bid in the
search key, may be cheaper to sort data entries!

SELECT DISTINCT
R.sid, R.bid

FROM Reserves R

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

One Approach to Selections

Find the most selective access path, retrieve tuples using
it, and apply any remaining terms that don’t match
the index:

Most selective access path: An index or file scan that we
estimate will require the fewest page I/Os.
Terms that match this index reduce the number of tuples
retrieved; other terms are used to discard some retrieved
tuples, but do not affect number of tuples/pages fetched.
Consider day<8/9/94 AND bid=5 AND sid=3. A B+ tree
index on day can be used; then, bid=5 and sid=3 must be
checked for each retrieved tuple. Similarly, a hash index on
<bid, sid> could be used; day<8/9/94 must then be checked.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Using an Index for Selections

Cost depends on #qualifying tuples, and
clustering.

Cost of finding qualifying data entries (typically small)
plus cost of retrieving records (could be large w/o
clustering).
In example, assuming uniform distribution of names,
about 10% of tuples qualify (100 pages, 10000 tuples).
With a clustered index, cost is little more than 100 I/Os;
if unclustered, upto 10000 I/Os!

SELECT *
FROM Reserves R
WHERE R.rname < ‘C%’

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Projection
The expensive part is removing duplicates.

SQL systems don’t remove duplicates unless the keyword
DISTINCT is specified in a query.

Sorting Approach: Sort on <sid, bid> and remove
duplicates. (Can optimize this by dropping unwanted
information while sorting.)
Hashing Approach: Hash on <sid, bid> to create
partitions. Load partitions into memory one at a
time, build in-memory hash structure, and eliminate
duplicates.
If there is an index with both R.sid and R.bid in the
search key, may be cheaper to sort data entries!

SELECT DISTINCT
R.sid, R.bid

FROM Reserves R

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Join: Index Nested Loops

If there is an index on the join column of one relation
(say S), can make it the inner and exploit the index.

Cost: M + ((M*pR) * cost of finding matching S tuples)

For each R tuple, cost of probing S index is about 1.2
for hash index, 2-4 for B+ tree. Cost of then finding S
tuples (assuming Alt. (2) or (3) for data entries)
depends on clustering.

Clustered index: 1 I/O (typical), unclustered: upto 1 I/O
per matching S tuple.

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Examples of Index Nested Loops

Hash-index (Alt. 2) on sid of Sailors (as inner):
Scan Reserves: 1000 page I/Os, 100*1000 tuples.
For each Reserves tuple: 1.2 I/Os to get data entry in
index, plus 1 I/O to get (the exactly one) matching Sailors
tuple. Total: 220,000 I/Os.

Hash-index (Alt. 2) on sid of Reserves (as inner):
Scan Sailors: 500 page I/Os, 80*500 tuples.
For each Sailors tuple: 1.2 I/Os to find index page with
data entries, plus cost of retrieving matching Reserves
tuples. Assuming uniform distribution, 2.5 reservations
per sailor (100,000 / 40,000). Cost of retrieving them is 1 or
2.5 I/Os depending on whether the index is clustered.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Join: Sort-Merge (R S)

Sort R and S on the join column, then scan them to do
a ``merge’’ (on join col.), and output result tuples.

Advance scan of R until current R-tuple >= current S tuple,
then advance scan of S until current S-tuple >= current R
tuple; do this until current R tuple = current S tuple.
At this point, all R tuples with same value in Ri (current R
group) and all S tuples with same value in Sj (current S
group) match; output <r, s> for all pairs of such tuples.
Then resume scanning R and S.

R is scanned once; each S group is scanned once per
matching R tuple. (Multiple scans of an S group are
likely to find needed pages in buffer.)

i=j

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Join: Index Nested Loops

If there is an index on the join column of one relation
(say S), can make it the inner and exploit the index.

Cost: M + ((M*pR) * cost of finding matching S tuples)

For each R tuple, cost of probing S index is about 1.2
for hash index, 2-4 for B+ tree. Cost of then finding S
tuples (assuming Alt. (2) or (3) for data entries)
depends on clustering.

Clustered index: 1 I/O (typical), unclustered: upto 1 I/O
per matching S tuple.

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Examples of Index Nested Loops

Hash-index (Alt. 2) on sid of Sailors (as inner):
Scan Reserves: 1000 page I/Os, 100*1000 tuples.
For each Reserves tuple: 1.2 I/Os to get data entry in
index, plus 1 I/O to get (the exactly one) matching Sailors
tuple. Total: 220,000 I/Os.

Hash-index (Alt. 2) on sid of Reserves (as inner):
Scan Sailors: 500 page I/Os, 80*500 tuples.
For each Sailors tuple: 1.2 I/Os to find index page with
data entries, plus cost of retrieving matching Reserves
tuples. Assuming uniform distribution, 2.5 reservations
per sailor (100,000 / 40,000). Cost of retrieving them is 1 or
2.5 I/Os depending on whether the index is clustered.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Join: Sort-Merge (R S)

Sort R and S on the join column, then scan them to do
a ``merge’’ (on join col.), and output result tuples.

Advance scan of R until current R-tuple >= current S tuple,
then advance scan of S until current S-tuple >= current R
tuple; do this until current R tuple = current S tuple.
At this point, all R tuples with same value in Ri (current R
group) and all S tuples with same value in Sj (current S
group) match; output <r, s> for all pairs of such tuples.
Then resume scanning R and S.

R is scanned once; each S group is scanned once per
matching R tuple. (Multiple scans of an S group are
likely to find needed pages in buffer.)

i=j

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Join: Index Nested Loops

If there is an index on the join column of one relation
(say S), can make it the inner and exploit the index.

Cost: M + ((M*pR) * cost of finding matching S tuples)

For each R tuple, cost of probing S index is about 1.2
for hash index, 2-4 for B+ tree. Cost of then finding S
tuples (assuming Alt. (2) or (3) for data entries)
depends on clustering.

Clustered index: 1 I/O (typical), unclustered: upto 1 I/O
per matching S tuple.

foreach tuple r in R do
foreach tuple s in S where ri == sj do

add <r, s> to result

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Examples of Index Nested Loops

Hash-index (Alt. 2) on sid of Sailors (as inner):
Scan Reserves: 1000 page I/Os, 100*1000 tuples.
For each Reserves tuple: 1.2 I/Os to get data entry in
index, plus 1 I/O to get (the exactly one) matching Sailors
tuple. Total: 220,000 I/Os.

Hash-index (Alt. 2) on sid of Reserves (as inner):
Scan Sailors: 500 page I/Os, 80*500 tuples.
For each Sailors tuple: 1.2 I/Os to find index page with
data entries, plus cost of retrieving matching Reserves
tuples. Assuming uniform distribution, 2.5 reservations
per sailor (100,000 / 40,000). Cost of retrieving them is 1 or
2.5 I/Os depending on whether the index is clustered.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Join: Sort-Merge (R S)

Sort R and S on the join column, then scan them to do
a ``merge’’ (on join col.), and output result tuples.

Advance scan of R until current R-tuple >= current S tuple,
then advance scan of S until current S-tuple >= current R
tuple; do this until current R tuple = current S tuple.
At this point, all R tuples with same value in Ri (current R
group) and all S tuples with same value in Sj (current S
group) match; output <r, s> for all pairs of such tuples.
Then resume scanning R and S.

R is scanned once; each S group is scanned once per
matching R tuple. (Multiple scans of an S group are
likely to find needed pages in buffer.)

i=j

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Example of Sort-Merge Join

Cost: M log M + N log N + (M+N)
The cost of scanning, M+N, could be M*N (very unlikely!)

With 35, 100 or 300 buffer pages, both Reserves and
Sailors can be sorted in 2 passes; total join cost: 7500.

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Highlights of System R Optimizer

Impact:
Most widely used currently; works well for < 10 joins.

Cost estimation: Approximate art at best.
Statistics, maintained in system catalogs, used to estimate
cost of operations and result sizes.
Considers combination of CPU and I/O costs.

Plan Space: Too large, must be pruned.
Only the space of left-deep plans is considered.

• Left-deep plans allow output of each operator to be pipelined into
the next operator without storing it in a temporary relation.

Cartesian products avoided.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Cost Estimation

For each plan considered, must estimate cost:
Must estimate cost of each operation in plan tree.

• Depends on input cardinalities.
• We’ve already discussed how to estimate the cost of

operations (sequential scan, index scan, joins, etc.)

Must also estimate size of result for each operation
in tree!

• Use information about the input relations.
• For selections and joins, assume independence of

predicates.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Example of Sort-Merge Join

Cost: M log M + N log N + (M+N)
The cost of scanning, M+N, could be M*N (very unlikely!)

With 35, 100 or 300 buffer pages, both Reserves and
Sailors can be sorted in 2 passes; total join cost: 7500.

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Highlights of System R Optimizer

Impact:
Most widely used currently; works well for < 10 joins.

Cost estimation: Approximate art at best.
Statistics, maintained in system catalogs, used to estimate
cost of operations and result sizes.
Considers combination of CPU and I/O costs.

Plan Space: Too large, must be pruned.
Only the space of left-deep plans is considered.

• Left-deep plans allow output of each operator to be pipelined into
the next operator without storing it in a temporary relation.

Cartesian products avoided.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Cost Estimation

For each plan considered, must estimate cost:
Must estimate cost of each operation in plan tree.

• Depends on input cardinalities.
• We’ve already discussed how to estimate the cost of

operations (sequential scan, index scan, joins, etc.)

Must also estimate size of result for each operation
in tree!

• Use information about the input relations.
• For selections and joins, assume independence of

predicates.

