ECS 165B: Database System Implementation
Lecture 7/

UC Davis
April 12, 2010

Acknowledgements: portions based on slides by Raghu Ramakrishnan and
Johannes Gehrke.

Class Agenda

e Last time:

— Dynamic aspects of B+ Trees

* Today:
— Summary: tree-structured indices

— Overview of query evaluation

* Reading
— Chapter 12 in Ramakrishan and Gehrke
— (or Chapter 13 in Silberschatz, Korth, and Sudarshan)

Announcements

Expanded set of tests posted:
/home/cs165b/DavisDB/TestRM.cpp

Page file manager bugfixes:
/home/cs165b/DavisDB/PageFileManager.cpp, h

/home/cs165b/DavisDB/FileHandle.cpp

Have you done an svn commit lately?

Summary: Tree-Structured Indices

Summary

+ Tree-structured indexes are ideal for range-
searches, also good for equality searches.

% ISAM is a static structure.

= Only leaf pages modified; overflow pages needed.

= Overflow chains can degrade performance unless size
of data set and data distribution stay constant.

% B+ tree is a dynamic structure.
= Inserts/deletes leave tree height-balanced; log r N cost.
« High fanout (F) means depth rarely more than 3 or 4.
« Almost always better than maintaining a sorted file.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

Summary (Contd.)

= Typically, 67% occupancy on average.

» Usually preferable to ISAM, modulo locking
considerations; adjusts to growth gracefully.

« If data entries are data records, splits can change rids!
+ Key compression increases fanout, reduces height.

+ Bulk loading can be much faster than repeated
inserts for creating a B+ tree on a large data set.

< Most widely used index in database management
systems because of its versatility. One of the most
optimized components of a DBMS.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

26

Overview of Query Evaluation

Reading: Chapter 12 of Ramakrishnan and Gehrke
(Chapter 13 of Silberschatz et al)

Overview of Query Evaluation

% Plan: Tree of R.A. ops, with choice of alg for each op.

» Each operator typically implemented using a “pull’
interface: when an operator is “pulled’ for the next output
tuples, it "pulls’ on its inputs and computes them.

< T'wo main issues in query optimization:
» For a given query, what plans are considered?
e Algorithm to search plan space for cheapest (estimated) plan.

» How is the cost of a plan estimated?

+ Ideally: Want to find best plan. Practically: Avoid
worst plans!

+ We will study the System R approach.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Recall: "Evaluation Plan" (ECS 165A)

Toname (Oprice>5000 ((CUSTOMERS M ORDERS) X OFFERS))

TTCName ((CUSTDMERS X ORDERS) X (UPrice>5OOO (OFFERS)))

Representation as evaluation plan (query tree):

WCName

|
O price > 5000 TCName

>

>
> - \OFFERS > - \
/ \ / \ TPrice > 5000

CUSTOMERS ORDERS CUSTOMERS ORDERS OFFERS

Recall: "Annotated Evaluation Plan" (ECS 165A)

e Query: List the name of all customers who have ordered a
product that costs more than $5,000.

Assume that for both CUSTOMERS and ORDERS an index on
CName exists: I;(CName, CUSTOMERS), I,(CName, ORDERS).

T CName (sort to remove duplicates)

block nested—loop join

>
get tuples for tldV \Q
><1 index—nested loop join
FrEE e

p1V \pehne full table scan

I;(CName, CUSTOMERS) I(CName, ORDERS) ORDERS

Some Common Technigues

% Algorithms for evaluating relational operators
use some simple ideas extensively:

* Indexing: Can use WHERE conditions to retrieve
small set of tuples (selections, joins)

* Jteration: Sometimes, faster to scan all tuples even if
there is an index. (And sometimes, we can scan the
data entries in an index instead of the table itself.)

* Partitioning: By using sorting or hashing, we can
partition the input tuples and replace an expensive
operation by similar operations on smaller inputs.

* Watch for these techniques as we discuss query evaluation/!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

Statistics and Catalogs

+ Need information about the relations and indexes
involved. Catalogs typically contain at least:
» # tuples (NTuples) and # pages (NPPages) for each relation.
» # distinct key values (NKeys) and NPages for each index.
» Index height, low/high key values (Low/High) for each
tree index.
+ Catalogs updated periodically.
» Updating whenever data changes is too expensive; lots of
approximation anyway, so slight inconsistency ok.
< More detailed information (e.g., histograms of the

values in some field) are sometimes stored.
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Catalogs in DavisDB

 Two catalog tables: relations and attributes

relations : relation name, tuple length, number of attributes,
cardinality, ...

attributes: relation name, attribute name, offset in tuple, attribute
type, attribute length, index name, ...

 More details when Part 3 is assigned

Access Paths

% An access path is a method of retrieving tuples:
* File scan, or index that matches a selection (in the query)

< A tree index matches (a conjunction of) terms that
involve only attributes in a prefix of the search key.
» E.g., Tree index on <a, b, c> matches the selection a=5
AND b=3, and a=5 AND b>6, but not b=3.
< A hash index matches (a conjunction of) terms that
has a term attribute = value for every attribute in the
search key of the index.

» E.g., Hash index on <4, b, c> matches a=5 AND b=3 AND
c=5; but it does not match b=3, or a=5 AND b=3, or a>5
AND b=3 AND c=5.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

A Note on Complex Selections

(day<8/9/94 AND rname="Paul’) OR bid=5 OR sid=3

+ Selection conditions are first converted to conjunctive
normal form (CNF):

(day<8/9/94 OR bid=5 OR sid=3) AND
(rname="Paul” OR bid=5 OR sid=3)

% We only discuss case with no ORs; see text if you are
curious about the general case.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

One Approach to Selections

% Find the most selective access path, retrieve tuples using
it, and apply any remaining terms that don’t match
the index:

» Most selective access path: An index or file scan that we
estimate will require the fewest page [/Os.

» Terms that match this index reduce the number of tuples
retrieved; other terms are used to discard some retrieved
tuples, but do not affect number of tuples/pages fetched.

» Consider day<8/9/94 AND bid=5 AND sid=3. A B+ tree
index on day can be used; then, bid=5 and sid=3 must be

checked for each retrieved tuple. Similarly, a hash index on
<bid, sid> could be used; day<8/9/94 must then be checked.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Using an Index for Selections

% Cost depends on #qualitying tuples, and
clustering.

» Cost of finding qualifying data entries (typically small)
plus cost of retrieving records (could be large w/o
clustering).

* In example, assuming uniform distribution of names,
about 10% of tuples quality (100 pages, 10000 tuples).
With a clustered index, cost is little more than 100 I/Os;
if unclustered, upto 10000 I/Os!

SELECT *
FROM Reserves R
WHERE R.rname < ‘C%’

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

_ , SELECT DISTINCT
Projection Rsid, Rbid
FROM Reserves R

+ The expensive part is removing duplicates.

* SQL systems don’t remove duplicates unless the keyword
DISTINCT is specified in a query.
% Sorting Approach: Sort on <sid, bid> and remove
duplicates. (Can optimize this by dropping unwanted
information while sorting.)

+ Hashing Approach: Hash on <sid, bid> to create
partitions. Load partitions into memory one at a
time, build in-memory hash structure, and eliminate
duplicates.

< If there is an index with both R.sid and R.bid in the

search key, may be cheaper to sort data entries!
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Join: Index Nested Loops

foreach tuple r in R do
foreach tuple s in S where ri ==s; do
add <r, s> to result
<+ If there is an index on the join column of one relation
(say S), can make it the inner and exploit the index.

» Cost: M+ ((M*pg) * cost of finding matching S tuples)

+ For each R tuple, cost of probing S index is about 1.2
for hash index, 2-4 for B+ tree. Cost of then finding S
tuples (assuming Alt. (2) or (3) for data entries)
depends on clustering.

* Clustered index: 11/0 (typical), unclustered: upto11/0
per matching S tuple.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Examples of Index Nested Loops

+ Hash-index (Alt. 2) on sid of Sailors (as inner):

» Scan Reserves: 1000 page I/Os, 1001000 tuples.

» For each Reserves tuple: 1.21/0s to get data entry in
index, plus 1 I/0 to get (the exactly one) matching Sailors
tuple. Total: 220,000 I/Os.

+ Hash-index (Alt. 2) on sid of Reserves (as inner):
* Scan Sailors: 500 page I/0Os, 80500 tuples.

» For each Sailors tuple: 1.2 1/0Os to find index page with
data entries, plus cost of retrieving matching Reserves
tuples. Assuming uniform distribution, 2.5 reservations
per sailor (100,000 / 40,000). Cost of retrieving them is1 or
2.51/0s depending on whether the index is clustered.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Join: Sort-Merge (R LE S)

% Sort R and S on the join column, then scan them to do
a ““merge”’ (on join col.), and output result tuples.

» Advance scan of R until current R-tuple >= current S tuple,
then advance scan of S until current S-tuple >= current R
tuple; do this until current R tuple = current S tuple.

» At this point, all R tuples with same value in Ri (current R
group) and all S tuples with same value in §j (current S
group) match; output <r, s> for all pairs of such tuples.

* Then resume scanning R and S.

% R is scanned once; each S group is scanned once per
matching R tuple. (Multiple scans of an S group are
likely to find needed pages in buffer.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

12

Example of Sort-Merge Join

sid |bid day rname

sid lsname rating lage |28 103 12/4/96 | guppy

7 |dustin 7 45 0 28 1103 [11/3/96 yuppy
28 | yuppy 9 35 0 31 [101 [10/10/96 | dustin

31 |lubber & 555 (131 [102 |10/12/96 | lubber
44 |guppy 5 350 |31 |[101 |[10/11/96 | lubber
58 |rusty 10 350 [|58 |103 [11/12/96 | dustin

% Cost: M logM + N log N + (M+N)
* The cost of scanning, M+N, could be M*N (very unlikely!)

+ With 35, 100 or 300 buffer pages, both Reserves and
Sailors can be sorted in 2 passes; total join cost: 7500.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Highlights of System R Optimizer

+ Impact:
» Most widely used currently; works well for < 10 joins.

% Cost estimation: Approximate art at best.

» Statistics, maintained in system catalogs, used to estimate
cost of operations and result sizes.

» Considers combination of CPU and I/0O costs.

% Plan Space: Too large, must be pruned.

* Only the space of left-deep plans is considered.

* Left-deep plans allow output of each operator to be pipelined into
the next operator without storing it in a temporary relation.

» Cartesian products avoided.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke

14

