ECS 165B: Database System Implementation
Lecture 8

UC Davis
April 14, 2010



Agenda

» Last time - Overview of query evaluation

» Today - A taste of database theory, Part 1:
relational algebra, relational calculus, and first-order logic

» Reading: Chapter 4 of Ramakrishnan and Gehrke (or Chapter 5
of Silberschatz et al.)



Announcements

Reminder: Don't use nested subdirectories for your project! (It will
break our automated tests.)
» cf http://www.cs.ucdavis.edu/~green/courses/ecs165b/
recordManager.html
Directory structure. Some teams may feel moved to introduce a nested directory structure to their
codebase, e.g., to keep the source files for separate components in their own sub-directories.

However, please do not do this! (Even if you feel good engineering practice dictates otherwise :)
Our automated tests assume that all source files and headers are in the same directory.

“*Same directory" refers to root DavisDB directory.


http://www.cs.ucdavis.edu/~green/courses/ecs165b/recordManager.html
http://www.cs.ucdavis.edu/~green/courses/ecs165b/recordManager.html

SQL, relational algebra, and relational calculus

» In ECS165A, you already saw two different database query
languages, SQL and relational algebra (RA):

select R.A, S.C
from R, S versus 7ac(R ® S)
where R.B = S.B

» Today we'll look at a third query language, relational calculus:

{06 2) [y R(x,y) AS(y,2)}

Note, refers to attributes by position rather than by name;
“unnamed" relational algebra does this too:

m1,4(02=3(R x S))



Why talk about relational calculus (RC)?

» To show that SQL is not just some ad-hoc language that people
cooked up in the 70s; rather, it is just first-order logic (FO) in
disguise! Main result we'll see today:

SQL=RA=RC=FO
“Logic is the calculus of computer science" - manna and waldinger 1985

» Known results about first-order logic can be transferred to SQL

» Convenient formalism when considering query containment and
qguery equivalence (we'll see these in another lecture)



Review: relational algebra (RA)

We'll use the ““'unnamed" version of the relational algebra:

predicate. R

selection. oj—;(E) or gj—(E)
projection. 7;, _; (E)
cartesian product. £; X Es

union. E; U Ey

vV v v v VY

difference. £; — Es.

A join" in the unnamed relational algebra is expressed using
selection, projection, and cartesian product. No need for renaming
(no names!), or intersection £; N E5 (why?).



Introducing the relational calculus (RC)

» Database query language based on first-order logic

> Syntax: expressions of the form

{1,y %n) | (X1, ., %n)}

where ¢(x1, ... ,Xp) is a first order formula with free variables
X1y.-.,Xn.
» Semantics: return all tuples (a1, . ..,a,) such that p(ay,...,an)

is true in the database.



What is a first-order formula?

» An expression built up using

variables. x, y, z, ...

constants. “Joe'", 42, ...

predicate symbols. names of database relations
logical connectives. A, V, -, —

equality =

quantifiers vV, 3

vV VY vV vV VvVY

» Examples of first-order formulae:
> VxVyVzR(x,y) AR(y,z) — R(x,z)
> VX R(x,x)
> VXYY R(x,y) — R(y,X)
Q: what do three formulae above together say of R?
> S(x,x) V Iy R(x,y) (x is a free variable)



Example: relational calculus queries

Database with three relations: Class(classld, className, roomNo);
Student(studentld, studentName); and Takes(studentld, classld).

» Find all students taking a class meeting in Wellman 1"

{(x) | 3s3c3n Student(s, x) A Takes(s, c)
AClass(c, n, "Wellman 1")}

» “'Find all pairs of students not taking a class together"

{(x,y) | 3s3s’ Student(s, x) A Student(s’, y)A
—Jc(Takes(s, c) A Takes(s',c))}



Example: relational calculus queries (2)

Database with three relations: Sailor(sid, name, rating, age);
Boats(bid, color); and Reserves(sid, bid, day).

» “'Find all sailors with a rating above 7"
» “'Find sailors rated above 7 who've reserved a red boat"

» Find sailors who've reserved all boats"



Ruling out “"bad" relational calculus queries

» It is possible to write relational calculus queries that return (a)
infinitely many answers, or (b) answers that are finite but
depend on things “outside' the database

» case (a): {(x,n) | ~Student(x,n)}
» case (b), subtle!: {(n) | Vx Student(x,n)}

» These “bad" queries are called domain-dependent queries:
their answers depend on the underlying domain of the
database, rather than what is actually in the database (its
“active domain"')

» Syntactic restriction to “safe' relational calculus queries ensures
domain-independence



Domain versus active domain

» For any database, the tuples in the database are over some
underlying domain of values (e.g., integers, strings, ...).

» The active domain of the database is the set of all values that
are actually found in the database.

» E.g., if the database has a single relation R with three tuples
(1,2),(2,3),(2,4), then the active domainis {1,2,3,4}. The
domain might be, e.g., all the natural numbers.

» The user may know what the active domain is, but not the
domain. (e.g., 32-bit integers versus 64-bit integers versus ...)

» Can compute the active domain with a database query! e.g.,
m1(R) Uma(R).



FO as a query language

If o(x1,...,Xp) is a first-order formula with free variables x1, . . ., x,
then we can think of ¢ itself as a query, shorthand for the relational

calculus query

{(le R 7Xn) | @(Xla cee 7Xn)}
In this sense, the relational calculus and first-order logic are really the
same query language.



RA C domain-independent FO

Theorem

Every relational algebra query can be rewritten as an equivalent
domain-independent FO query.

Proof.
(Sketch.) If E1 = {(x1,...,Xn) | ©(x1,...,%n)} and
Eo={(W1s--s¥Vm) | ¥(V1,---,¥m)}, then, e.g.,

> m1,32(E1) = {(x1,x3,%2) | Ixa- - Ixn p(X1,..., %)}

> o9-3(E1) = {(X1,.--,%n) | ©(X1,...,Xn) A X2 = X3}

> E1 X Ey =
{(Xla"'axnayla"'aym) | @(Xlw"axn) /\d}(ylvaym)}



Domain-independent FO C RA

Theorem

Every domain-independent FO query can be rewritten as an
equivalent relational algebra query.

Proof.

Omitted (but surprisingly straightforward!)



Equivalence of relational algebra queries

Fundamental problem relevant to query optimization: given
relational algebra queries Q, @', are Q and Q' equivalent? That is, do
their answers agree on all databases?

Theorem

Equivalence of relational algebra queries is undecidable.

Proof.

Follows from a well-known result in mathematical logic,
Trakhtenbrot's Theorem, which says that validity of first-order
sentence on "finite structures" (i.e., databases) is undecidable. A
first-order sentence - a formula with no free variables - ¢ is valid if
it's true for any database. ]



Summary

» Take-home message: SQL is just first-order logic in disguise

» Although, we ignored features of ““real" SQL like aggregation,
user-defined functions, ...

» Next time: some beautiful results about fragments of SQL where
equivalence is decidable.



