
ECS 165B: Database System ImplementaƟon
Lecture 8

UC Davis
April 14, 2010



Agenda

I Last Ɵme - Overview of query evaluaƟon

I Today - A taste of database theory, Part 1:
relaƟonal algebra, relaƟonal calculus, and first-order logic

I Reading: Chapter 4 of Ramakrishnan and Gehrke (or Chapter 5
of Silberschatz et al.)



Announcements

Reminder: Don't use nested subdirectories for your project! (It will
break our automated tests.)

I cf. http://www.cs.ucdavis.edu/~green/courses/ecs165b/
recordManager.html

4/14/10 11:48 AMECS 165B Spring 2010 - DavisDB Project - Record Management Component

Page 1 of 3http://www.cs.ucdavis.edu/~green/courses/ecs165b/recordManager.html

ECS 165B Spring 2010 - Database System Implementation

DavisDB Part 1: Record Management Component (due 4/11 at 11:59pm)

Introduction

The first component of DavisDB that you will implement is the Record Management component.
This component provides classes and methods for managing files of unordered records (also known
as heap files). In the architecture of the DavisDB system, it sits atop the Page File Component that
we have provided for you. Your Record Management component will store records in paged files
provided by the PageFileManager. To manage the file contents, you will probably want to use the
first page of each file as a special header page. This page should contain free space information, as
well as whatever other metadata you find useful in your implementation. You must decide exactly
how records will be laid out on pages. Your design task is simplified by the fact that each file will
contain only fixed-sized records (although record size may differ across files). More detailed
implementation suggestions are given below.

Logistics

Code distribution. The code for the Page File component, and the interfaces and skeleton files for
the Record Manager component, are given to you in your team's subversion repository. See the
main project page for details on how to access your repository. Filenames that begin with "Record"
form a skeleton version of the Record Manager component implementation that you must flesh out
(see interfaces below). The other source and header files form the Page File component. We have
used a Java-style convention for file names, where the file name is the same as the class name, so it
should be easy for you to guess which file does what. A few of the files, such as
AllocationPage.cpp, correspond to classes used internally by the Page File components, and can
be ignored. The distribution also contains a file Test.cpp that contains some sample tests.

cmake. We will use cmake to generate a Linux makefile to compile your code. cmake is installed on
the CSIF lab machines (and is a free download for use at home). The code distribution includes a
cmake makefile called CMakeLists.txt. When adding new source files and headers to your project,
please make sure to keep this file updated. To generate a Linux makefile, simply run "cmake ." from
the command line. cmake can generate a number of different makefile and project formats, such as
Eclipse projects, as well; see the online documentation for details.

Subversion. Team members will coordinate their efforts, and submit their code, via a dedicated
subversion repository for that team. See the main project page for details.

Directory structure. Some teams may feel moved to introduce a nested directory structure to their
codebase, e.g., to keep the source files for separate components in their own sub-directories.
However, please do not do this! (Even if you feel good engineering practice dictates otherwise :)
Our automated tests assume that all source files and headers are in the same directory.

``Same directory'' refers to root DavisDB directory.

http://www.cs.ucdavis.edu/~green/courses/ecs165b/recordManager.html
http://www.cs.ucdavis.edu/~green/courses/ecs165b/recordManager.html


SQL, relaƟonal algebra, and relaƟonal calculus

I In ECS165A, you already saw two different database query
languages, SQL and relaƟonal algebra (RA):

select R.A, S.C
from R, S
where R.B = S.B

versus πA,C(R on S)

I Today we'll look at a third query language, relaƟonal calculus:

{(x, z) | ∃y R(x, y) ∧ S(y, z)}

Note, refers to aƩributes by posiƟon rather than by name;
``unnamed'' relaƟonal algebra does this too:

π1,4(σ2=3(R× S))



Why talk about relaƟonal calculus (RC)?

I To show that SQL is not just some ad-hoc language that people
cooked up in the 70s; rather, it is just first-order logic (FO) in
disguise! Main result we'll see today:

SQL = RA = RC = FO

``Logic is the calculus of computer science'' -- Manna and Waldinger 1985

I Known results about first-order logic can be transferred to SQL

I Convenient formalism when considering query containment and
query equivalence (we'll see these in another lecture)



Review: relaƟonal algebra (RA)

We'll use the ``unnamed'' version of the relaƟonal algebra:

I predicate. R
I selecƟon. σi=j(E) or σi=c(E)
I projecƟon. πi1,...,ik(E)
I cartesian product. E1 × E2

I union. E1 ∪ E2

I difference. E1 − E2.

A ``join'' in the unnamed relaƟonal algebra is expressed using
selecƟon, projecƟon, and cartesian product. No need for renaming
(no names!), or intersecƟon E1 ∩ E2 (why?).



Introducing the relaƟonal calculus (RC)

I Database query language based on first-order logic

I Syntax: expressions of the form

{(x1, . . . , xn) | φ(x1, . . . , xn)}

where φ(x1, . . . , xn) is a first order formula with free variables
x1, . . . , xn.

I SemanƟcs: return all tuples (a1, . . . , an) such that φ(a1, . . . , an)
is true in the database.



What is a first-order formula?

I An expression built up using
I variables. x, y, z, . . .
I constants. ``Joe'', 42, . . .
I predicate symbols. names of database relaƟons
I logical connecƟves. ∧,∨,¬,→
I equality =
I quanƟfiers ∀,∃

I Examples of first-order formulae:
I ∀x∀y∀z R(x, y) ∧ R(y, z) → R(x, z)
I ∀x R(x, x)
I ∀x∀y R(x, y) → R(y, x)

Q: what do three formulae above together say of R?
I S(x, x) ∨ ∃y R(x, y) (x is a free variable)



Example: relaƟonal calculus queries

Database with three relaƟons: Class(classId, className, roomNo);
Student(studentId, studentName); and Takes(studentId, classId).

I ``Find all students taking a class meeƟng in Wellman 1''

{(x) | ∃s∃c∃n Student(s, x) ∧ Takes(s, c)
∧Class(c, n, "Wellman 1")}

I ``Find all pairs of students not taking a class together''

{(x, y) | ∃s∃s′ Student(s, x) ∧ Student(s′, y)∧
¬∃c(Takes(s, c) ∧ Takes(s′, c))}



Example: relaƟonal calculus queries (2)

Database with three relaƟons: Sailor(sid, name, raƟng, age);
Boats(bid, color); and Reserves(sid, bid, day).

I ``Find all sailors with a raƟng above 7''

I ``Find sailors rated above 7 who've reserved a red boat''

I ``Find sailors who've reserved all boats''



Ruling out ``bad'' relaƟonal calculus queries

I It is possible to write relaƟonal calculus queries that return (a)
infinitelymany answers, or (b) answers that are finite but
depend on things ``outside'' the database

I case (a): {(x, n) | ¬Student(x, n)}
I case (b), subtle!: {(n) | ∀x Student(x, n)}

I These ``bad'' queries are called domain-dependent queries:
their answers depend on the underlying domain of the
database, rather than what is actually in the database (its
``acƟve domain'')

I SyntacƟc restricƟon to ``safe'' relaƟonal calculus queries ensures
domain-independence



Domain versus acƟve domain

I For any database, the tuples in the database are over some
underlying domain of values (e.g., integers, strings, . . . ).

I The acƟve domain of the database is the set of all values that
are actually found in the database.

I E.g., if the database has a single relaƟon R with three tuples
(1, 2), (2, 3), (2, 4), then the acƟve domain is {1, 2, 3, 4}. The
domain might be, e.g., all the natural numbers.

I The user may know what the acƟve domain is, but not the
domain. (e.g., 32-bit integers versus 64-bit integers versus . . . )

I Can compute the acƟve domain with a database query! e.g.,
π1(R) ∪ π2(R).



FO as a query language

If φ(x1, . . . , xn) is a first-order formula with free variables x1, . . . , xn
then we can think of φ itself as a query, shorthand for the relaƟonal
calculus query

{(x1, . . . , xn) | φ(x1, . . . , xn)}

In this sense, the relaƟonal calculus and first-order logic are really the
same query language.



RA⊆ domain-independent FO

Theorem

Every relaƟonal algebra query can be rewriƩen as an equivalent
domain-independent FO query.

Proof.

(Sketch.) If E1 ≡ {(x1, . . . , xn) | φ(x1, . . . , xn)} and
E2 ≡ {(y1, . . . , ym) | ψ(y1, . . . , ym)}, then, e.g.,

I π1,3,2(E1) ≡ {(x1, x3, x2) | ∃x4 · · · ∃xn φ(x1, . . . , xn)}

I σ2=3(E1) ≡ {(x1, . . . , xn) | φ(x1, . . . , xn) ∧ x2 = x3}

I E1 × E2 ≡
{(x1, . . . , xn, y1, . . . , ym) | φ(x1, . . . , xn) ∧ ψ(y1, . . . , ym)}



Domain-independent FO⊆ RA

Theorem

Every domain-independent FO query can be rewriƩen as an
equivalent relaƟonal algebra query.

Proof.

OmiƩed (but surprisingly straighƞorward!)



Equivalence of relaƟonal algebra queries

Fundamental problem relevant to query opƟmizaƟon: given
relaƟonal algebra queries Q,Q′, are Q and Q′ equivalent? That is, do
their answers agree on all databases?

Theorem

Equivalence of relaƟonal algebra queries is undecidable.

Proof.

Follows from a well-known result in mathemaƟcal logic,
Trakhtenbrot's Theorem, which says that validity of first-order
sentence on ``finite structures'' (i.e., databases) is undecidable. A
first-order sentence - a formula with no free variables - φ is valid if
it's true for any database.



Summary

I Take-home message: SQL is just first-order logic in disguise

I Although, we ignored features of ``real'' SQL like aggregaƟon,
user-defined funcƟons, . . .

I Next Ɵme: some beauƟful results about fragments of SQL where
equivalence is decidable.


