Reconcilable Differences

Todd J. Green Zachary G. lves Val Tannen
University of Pennsylvania

March 24, 2009
@ ICDT 09, Saint Petersburg

Change is a Constant in Data Management

* Databases are highly dynamic; many kinds of changes
need to be propagated efficiently:

— To data (“view maintenance”)
— To view definitions (“view adaptation”)

— Others, such as schema evolution, etc.

e Data exchange and collaborative data sharing systems
(e.g., ORCHESTRA [lves+ 05]) exacerbate this need:

— Large numbers of materialized views

— Frequent updates to data, schemas, view definitions

Change Propagation: a Problem of
Computing Differences

View maintenance

] view definition .
Given: source - materialized
data view

change to source Goal: compute change to
data (difference wrt ' pute &

) materialized view
current version)

(difference)

View adaptation

. view definition .
Given: source - materialized
data view

change to view definition Goal: compute change to
(another kind of difference) materialized view

Challenges in Change Propagation

View maintenance: studied since at least the mid-eighties
[Blakeley+ 86], but existing solutions quite narrow and limited

— Various known methods to compute changes “incrementally”, e.g.,
count algorithm [Gupta+ 93]

— How do we optimize this process? What is space of all update plans?

View adaptation: less attention, but renewed importance in
context of data exchange/collaborative data sharing systems

— Previous approaches: limited to case-based methods for simple
changes [Gupta+ 01]

— Complex changes? Again, space of all update plans?

Key challenge: compute changes using database queries!

Contributions

* A novel, unified approach to view maintenance, view adaptation
that allows the incorporation of optimization strategies:

— Representing changes and data together: Z-relations

— View maintenance, view adaptation as special cases of a more general
problem: rewriting queries using views (on Z-relations)

* Asound and complete algorithm for rewriting relational algebra
(RA) queries (with difference!) using RA views on Z-relations

— Enabled by the surprising decidability of Z-equivalence of RA queries

* Maintaining/adapting views under bag or set semantics via
excursion through Z-semantics

Representing Changes as Data: Z-Relations

* Can think of changes to data as a e sl ‘ ‘

kind of annotated relation

e Z-relation: a relation where each tuple

is associated with a (positive or negative) R4

count

— Positive counts indicate (multiple) insertions;

negative counts, (multiple) deletions

— Uniform representation for both data and changes to data

deleted tuple ‘ —

d

C

— Update application = union (a query!)

R’ =R U RA

Relational Algebra (RA) on Z-Relations

join (X) multiplies counts
union (U), projection () add counts
selection (o) multiplies counts by O or 1

difference (-) subtracts counts

Same as for bag semantics, except difference can lead to
negative annotations (unlike “proper subtraction” in bag
semantics where negative counts are truncated to 0)

Incremental View Maintenance:
An Application of Z-Relations

Source relation: Materialized view (with duplicates):
a 1 a a |1
R ¢ bl VIx,y) = R(x,z),R(zy) a ¢ |1
b ¢ |1 b b |2 2 copies of
(b,b)
b a |1 C C 1

insert 1 copy
. . . of (b,d)
Delta rules [Gupta+ 93] for V with Z-relations semantics:

VA(X)y) e R(XIZ)I RA(Zry)
VA(XIy) o RA(X,Z), R’(Zly)

Delta Rules: a Special Case of
Rewriting Queries Using Views on Z-Relations

Query (to compute diff.): Materialized views:

V(le) o R(XIZ)I R(Z,Y)

RI(Xry) e R(le)
Rl(xly) o RA(le)

VA(X,y) e RI(XIZ)l RI(Ziy)
- VA(X/y) - R(XIZ)I R(Zry)

rewrite VA using the
materialized views ... OTHER PLANS...?

» Another delta rules

Delta rules rewriting: "
rewriting:

VA(x,y) = R(x,2), RA(z,y)

VA(X,y) — RA(X,Z), R’(Z,y) VA(le) :_ RA(XIZ)I R(Z,V)

VA(X,Y) o R’(XIZ)I RA(ZIY)

View Adaptation: Another Application of
Rewriting Queries Using Views

Old view definition: New view definition:

V(x,y) :— R(x,z), R(z,y) V’(x,y) :— R(x,z), R(z,y)
V(le) - R(X,Z), R(y,Z)

reformulate using
materialized view V

... AGAIN, OTHER PLANS...?
A plan to “adapt” Vinto V’:

V,(le) o V(le)
- V’(le) o R(X,Z), R(y,Z)

Bag Semantics, Set Semantics via Z-Semantics

* Even if we can solve the problems for Z-relations, what
does this tell us about the answers we actually need: for
bag semantics or set semantics?

* For positive RA (RA*) queries/views on bags
— Z~semantics and bag semantics agree
— Further, eliminate duplicates to get set semantics

— Still works if rewriting is actually in RA (introduces difference)!

* Also works for RA queries/views with restricted use of
difference

— Still covers, e.g., the incremental view maintenance case

Z-Equivalence Coincides with
Bag-Equivalence for Positive RA (RA™)

Lemma. For RA" queries Q, Q" we have Q =, Q' (equivalent
on Z-relations) iff Q = Q' (equivalent on bag relations)

Corollary. Checking Z-equivalence for RA™: convert to unions
of conjunctive queries (UCQs), check if isomorphic

— CQs Q=xQ iffQ=Q [Lovasz 67, Chaudhuri&Vardi 93]

—UCQs Q=,QiffQ=Q [Cohen+ 99

Complexity of above: graph-isomorphism complete for UCQs;
for RA™ (exponentially more concise than UCQs), don’t know!

Z~Equivalence is Decidable for RA

Key idea. Every RA query Q can be (effectively) rewritten as a
single difference A — B where A and B are positive

— Not true under set or bag semantics!

Corollary. Z-equivalence of RA queries is decidable

Proof. A-B=,C-D where A, B, C, D are positive
= AUD=,BUC
& AUD=yBUC whichis decidable [Cohen+ 99]

— Same problem undecidable for set, bag semantics!

Alternative representation of relational algebra queries
justified by above: differences of UCQs

Rewriting Queries Using Views with Z-Relations

Given: query Q and set V of materialized views, expressed as
differences of UCQs

Goal: enumerate all Z-equivalent rewritings of Q (w.r.t. V)

Approach: term rewrite system with two rewrite rules

unfolding replace view predicate with its definition
cancellation e.g.,,(AUB)—(AUC)becomesB—-C

By repeatedly applying rewrite rules — both forwards and
backwards (folding and augmentation) — we reach all (and
only) Z-equivalent rewritings

An Infinite Space of Rewritings

* There are only finitely many positive (nontrivial) rewritings of
RA query Q using RA views V

* With difference, can always rewrite ad infinitum by adding
terms that “cancel”

e But even without this: .
Now consider

Let RS denote relational Q = R?
composition of R with S, i.e., =, VR-R* (equiv. is w.r.t. V)
RS(x,y) :— R(x,z), R(z,y) =, VR-VR3UR®
=, VR-VR3*UVR>—R®
Let V contain single view =7

V=RU R3
repeated relational :‘llone °f.th¢ise have
composition cancelling” terms!

15

How Do We Bound the Space of Rewritings?
Use Cost Models!

Can make some reasonable cost model assumptions:
— cost(A U B) = cost(A) + cost(B)

— cost(A ™ B) 2 cost(A) + cost(B) + card(A > B)

— etc.

Theorem. Under above assumptions, can find minimal-cost
reformulation of RA query Q using RA views Vin a bounded
number of steps

Blueprint for a Practical Implementation

Approach: pair reformulation algorithm with DBMS cost
estimator, cost-based search strategies

heuristics, search strategies

Changes to EFFICIENT

data, view Reformulation - UPDATE PLAN

definitions Engine

execute! (Z semantics)
pIansC : costs
DBMS Cost -
8 6
\ DBMS statistics, indices, etc old views updated views)

Main challenge: find effective heuristics, strategies to guide search
through (finite but huge) space; find good (not optimal) plan quickly

Highlights of Other Results

e /Z-equivalence remains decidable for RA with built-in
predicates (<, <, >, 2, #) over dense linear order

— Basic idea: can linearize (cf., e.g., [Cohen+ 99]) queries, then test
for isomorphism

e.g., Q(x,y) - R(xy), x 2y = Q(xy) :- R(x,y), x<y; Q(x,y) :- R(x,y), y < x

* Full characterization of class of RA queries where Z-
semantics and bag semantics agree on all bag instances,
hence where Z-semantics can be used for evaluation

— Bad news: undecidable class

— Good news: covers incremental maintenance of positive views
(where difference is used only for changes to sources)

Related Work

Incremental view maintenance [Blakeley+ 86], [Gupta+ 93], ...
— “deltas” [Gupta+93]: an early form of our Z-relations

Answering queries using views [Levy+ 95], [Chaudhuri+ 95],
[Afrati&Pavlaki 06], ...

Bag-containment/bag-equivalence of CQs/UCQs

[Lovasz 67], [Chaudhuri&Vardi 93], [loannidis&Ramakrishnan 95],
[Cohen+ 99], [Jayram+ 06]

Containment/equivalence with provenance annotations
[Tan 03], [Green ICDT 09]

View adaptation [Mohania&Dong 96], [Gupta+ 01]

Mapping evolution [velegrakis+ 03]

Conclusion

Change propagation for RA views can be optimized, via
rewriting queries using views and Z-relations

— Sound and complete rewriting algorithm

Wider impact: techniques also work for provenance-
annotated Z[X]-relations, cf. [Green+ 07], [Geerts&Poggi 08]

Open problems: exact complexity of checking...
— Z~equivalence of RA queries? (in PSPACE, Gl-hard)
— Bag-equivalence of RA* queries? (also in PSPACE, Gl-hard)

— Above problems, for queries with built-in predicates?

