Reconcilable Differences

Todd J. Green Zachary G. Ives Val Tannen University of Pennsylvania

March 24, 2009 @ ICDT 09, Saint Petersburg

Change is a Constant in Data Management

- Databases are highly dynamic; many kinds of changes need to be propagated efficiently:
 - To data ("view maintenance")
 - To view definitions ("view adaptation")
 - Others, such as schema evolution, etc.
- Data exchange and collaborative data sharing systems (e.g., ORCHESTRA [Ives+ 05]) exacerbate this need:
 - Large numbers of materialized views
 - Frequent updates to data, schemas, view definitions

Change Propagation: a Problem of **Computing Differences**

View maintenance

view definition materialized Given: source data view

change to source data (difference wrt current version)

compute change to Goal:

materialized view

(difference)

View adaptation

Given: source

data

view definition

materialized view

change to **view definition** (another kind of difference) Goal: compute change to materialized view

Challenges in Change Propagation

- View maintenance: studied since at least the mid-eighties [Blakeley+ 86], but existing solutions quite narrow and limited
 - Various known methods to compute changes "incrementally", e.g.,
 count algorithm [Gupta+ 93]
 - How do we optimize this process? What is space of all update plans?
- **View adaptation**: less attention, but renewed importance in context of data exchange/collaborative data sharing systems
 - Previous approaches: limited to case-based methods for simple changes [Gupta+ 01]
 - Complex changes? Again, space of all update plans?
- Key challenge: compute changes using database queries!

Contributions

- A novel, unified approach to view maintenance, view adaptation that allows the incorporation of optimization strategies:
 - Representing changes and data together: \mathbb{Z} -relations
 - View maintenance, view adaptation as special cases of a more general problem: **rewriting queries using views** (on \mathbb{Z} -relations)
- A sound and complete algorithm for rewriting relational algebra (RA) queries (with difference!) using RA views on \mathbb{Z} -relations
 - Enabled by the surprising decidability of \mathbb{Z} -equivalence of RA queries
- Maintaining/adapting views under bag or set semantics via excursion through \mathbb{Z} -semantics

Representing Changes as Data: \mathbb{Z} -Relations

 Can think of changes to data as a kind of annotated relation

inserted tuple	+
deleted tuple	_

 Z-relation: a relation where each tuple is associated with a (positive or negative)
 count

$$R^{\Delta}$$
 $\begin{bmatrix} a & b & 2 \\ c & d & -3 \end{bmatrix}$

- Positive counts indicate (multiple) insertions;
 negative counts, (multiple) deletions
- Uniform representation for both data and changes to data
- Update application = union (a query!)

$$R' = R \cup R^{\Delta}$$

Relational Algebra (RA) on \mathbb{Z} -Relations

```
join (\bowtie) multiplies counts union (\cup), projection (\pi) add counts selection (\sigma) multiplies counts by 0 or 1 difference (-) subtracts counts
```

Same as for bag semantics, except difference can lead to negative annotations (unlike "proper subtraction" in bag semantics where negative counts are truncated to 0)

Incremental View Maintenance: An Application of \mathbb{Z} -Relations

$$V^{\Delta}(x,y) := R(x,z), R^{\Delta}(z,y)$$

$$V^{\Delta}(x,y) := R^{\Delta}(x,z), R'(z,y)$$

Delta Rules: a Special Case of Rewriting Queries Using Views on \mathbb{Z} -Relations

Query (to compute diff.):

$$V^{\Delta}(x,y) := R'(x,z), R'(z,y)$$
$$-V^{\Delta}(x,y) := R(x,z), R(z,y)$$

rewrite V^{Δ} using the materialized views

Materialized views:

$$V(x,y) := R(x,z), R(z,y)$$

$$R'(x,y) := R(x,y)$$

$$R'(x,y) := R^{\Delta}(x,y)$$

... OTHER PLANS...?

Delta rules rewriting:

$$V^{\Delta}(x,y) := R(x,z), R^{\Delta}(z,y)$$

 $V^{\Delta}(x,y) := R^{\Delta}(x,z), R'(z,y)$

Another delta rules rewriting:

$$V^{\Delta}(x,y) := R^{\Delta}(x,z), R(z,y)$$

$$V^{\Delta}(x,y) := R'(x,z), R^{\Delta}(z,y)$$

View Adaptation: Another Application of Rewriting Queries Using Views

Old view definition:

V(x,y) := R(x,z), R(z,y)

V(x,y) := R(x,z), R(y,z)

New view definition:

V'(x,y) := R(x,z), R(z,y)

reformulate using materialized view *V*

... AGAIN, OTHER PLANS...?

A plan to "adapt" V into V":

$$V'(x,y) := V(x,y)$$

$$-V'(x,y):=R(x,z), R(y,z)$$

Bag Semantics, Set Semantics via \mathbb{Z} -Semantics

- Even if we can solve the problems for \mathbb{Z} -relations, what does this tell us about the answers we actually need: for bag semantics or set semantics?
- For positive RA (RA+) queries/views on bags
 - \mathbb{Z} -semantics and bag semantics agree
 - Further, eliminate duplicates to get set semantics
 - Still works if rewriting is actually in RA (introduces difference)!
- Also works for RA queries/views with restricted use of difference
 - Still covers, e.g., the incremental view maintenance case

\mathbb{Z} -Equivalence Coincides with Bag-Equivalence for Positive RA (RA⁺)

Lemma. For RA^+ queries Q, Q' we have $Q \equiv_{\mathbb{Z}} Q'$ (equivalent on \mathbb{Z} -relations) iff $Q \equiv_{\mathbb{N}} Q'$ (equivalent on bag relations)

Corollary. Checking \mathbb{Z} -equivalence for RA^+ : convert to **unions** of conjunctive queries (UCQs), check if **isomorphic**

- CQs
$$Q \equiv_{\mathbb{N}} Q'$$
 iff $Q \cong Q'$ [Lovász 67, Chaudhuri&Vardi 93]

- UCQs
$$Q \equiv_{\mathbb{N}} Q'$$
 iff $Q \cong Q'$ [Cohen+99]

Complexity of above: graph-isomorphism complete for UCQs; for RA^+ (exponentially more concise than UCQs), don't know!

\mathbb{Z} -Equivalence is Decidable for RA

Key idea. Every RA query Q can be (effectively) rewritten as a single difference A - B where A and B are positive

— Not true under set or bag semantics!

Corollary. \mathbb{Z} -equivalence of *RA* queries is decidable

Proof. $A - B \equiv_{\mathbb{Z}} C - D$ where A, B, C, D are positive

 \Leftrightarrow $A \cup D \equiv_{\mathbb{Z}} B \cup C$

 \Leftrightarrow $A \cup D \equiv_{\mathbb{N}} B \cup C$ which is decidable [Cohen+99]

Same problem undecidable for set, bag semantics!

Alternative representation of relational algebra queries justified by above: differences of UCQs

Rewriting Queries Using Views with \mathbb{Z} -Relations

Given: query Q and set \mathcal{V} of materialized views, expressed as differences of UCQs

Goal: enumerate **all** \mathbb{Z} -equivalent rewritings of Q (w.r.t. \mathcal{V})

Approach: term rewrite system with two rewrite rules

unfolding	replace view predicate with its definition
cancellation	e.g., $(A \cup B) - (A \cup C)$ becomes $B - C$

By repeatedly applying rewrite rules – both **forwards** and **backwards** (**folding** and **augmentation**) – we reach all (and only) \mathbb{Z} -equivalent rewritings

An Infinite Space of Rewritings

- There are only finitely many positive (nontrivial) rewritings of RA query Q using RA views \mathcal{V}
- With difference, can always rewrite ad infinitum by adding terms that "cancel"
- But even without this:

Let RS denote **relational** Q **composition** of R with S, i.e., RS(x,y) := R(x,z), R(z,y)

Let ${\mathcal V}$ contain single view

$$V = R \cup R^3$$

repeated relational composition

Now consider

$$Q = R^2$$

$$\equiv_{\mathbb{Z}} VR - R^4 \qquad \text{(equiv. is w.r.t. } \mathcal{V}\text{)}$$

$$\equiv_{\mathbb{Z}} VR - VR^3 \cup R^6$$

$$\equiv_{\mathbb{Z}} VR - VR^3 \cup VR^5 - R^8$$

$$\equiv_{\mathbb{Z}} \dots$$

none of these have "cancelling" terms!

How Do We Bound the Space of Rewritings? Use Cost Models!

Can make some reasonable cost model assumptions:

$$- cost(A \cup B) ≥ cost(A) + cost(B)$$

$$- cost(A \bowtie B) ≥ cost(A) + cost(B) + card(A \bowtie B)$$

– etc.

Theorem. Under above assumptions, can find minimal-cost reformulation of RA query Q using RA views \mathcal{V} in a bounded number of steps

Blueprint for a Practical Implementation

Approach: pair reformulation algorithm with DBMS cost estimator, cost-based search strategies

Main challenge: find effective heuristics, strategies to guide search through (finite but huge) space; find good (not optimal) plan quickly

Highlights of Other Results

- \mathbb{Z} -equivalence remains decidable for RA with built-in predicates $(<, \le, >, \ge, \ne)$ over dense linear order
 - Basic idea: can linearize (cf., e.g., [Cohen+ 99]) queries, then test for isomorphism

e.g.,
$$Q(x,y) := R(x,y), x \neq y \rightarrow Q(x,y) := R(x,y), x < y ; Q(x,y) := R(x,y), y < x$$

- Full characterization of class of RA queries where \mathbb{Z} semantics and bag semantics agree on all bag instances,
 hence where \mathbb{Z} -semantics can be used for evaluation
 - Bad news: undecidable class
 - Good news: covers incremental maintenance of positive views (where difference is used only for changes to sources)

Related Work

- Incremental view maintenance [Blakeley+ 86], [Gupta+ 93], ...
 - "deltas" [Gupta+ 93]: an early form of our \mathbb{Z} -relations
- Answering queries using views [Levy+ 95], [Chaudhuri+ 95], [Afrati&Pavlaki 06], ...
- Bag-containment/bag-equivalence of CQs/UCQs
 [Lovász 67], [Chaudhuri&Vardi 93], [Ioannidis&Ramakrishnan 95],
 [Cohen+ 99], [Jayram+ 06]
- Containment/equivalence with provenance annotations [Tan 03], [Green ICDT 09]
- View adaptation [Mohania&Dong 96], [Gupta+ 01]
- Mapping evolution [Velegrakis+ 03]

Conclusion

- Change propagation for RA views can be **optimized**, via rewriting queries using views and \mathbb{Z} -relations
 - Sound and complete rewriting algorithm
- Wider impact: techniques also work for **provenance**-**annotated** $\mathbb{Z}[X]$ -relations, cf. [Green+ 07], [Geerts&Poggi 08]
- Open problems: exact complexity of checking...
 - $-\mathbb{Z}$ -equivalence of RA queries? (in PSPACE, GI-hard)
 - Bag-equivalence of RA⁺ queries? (also in PSPACE, GI-hard)
 - Above problems, for queries with built-in predicates?