ECS 165B: Database System Implementation
Lecture 10

UC Davis
April 19, 2010

Acknowledgements: portions based on slides by Raghu Ramakrishnan and
Johannes Gehrke.

Class Agenda

e Last time:

— A taste of database theory, Part 2: containment, equivalence, and
minimization of conjunctive queries

* Today:
— Overview of DavisDB project, Part 2: indexing
— Short lecture

* Reading

— Chapter 10 of Ramakrishnan and Gehrke (or Chapter 12 of Silberschatz
et al)

Announcements

Thanks for your hard work on Part 1!!! Hopefully, it will get
easier from here.

Part 2 of project out tonight, due Sunday, 5/2 @ 11:59pm

Quiz #1 in class next Wednesday

DavisDB, Part 2: Indexing

Second part of project: indexing component

Provides classes and methods for managing persisting indices
on data in unordered heap files (i.e., record files)

Like RecordManager, uses page files underneath

Sits side-by-side with RecordManager on top of
PageFileManager

Indexing structure we'll use: B+ tree (with some
simplifications)

Recall: B+ Trees

We already covered B+ trees in depth in Lectures 4 and 6

Root ™\,

5 13 24 30
| 3 5| 7| 8 14*|16* 197 204 22* 24*| 27* 29+ 33+ 34*| 38*| 39*

3 alternatives for storing records (records themselves, ids, or lists of
ids)
Insertions: need to split nodes when they become full

Deletions: need to merge nodes when they become less than half-
full

B+ Trees and Page Files

pageNo a page
Root
7 a page
pageNo >+l L Pag
5 || 13 24 || 30
pageN:y \ -
" | Vg \
2+ | 3* 5+ 7+ | 8* 14*] 16* 191 207 22* 24*| 27| 29* 33+ 34+
a page

Will also need a header page, just as in Record Manager
(with pageNo of root node, perhaps some statistics, etc)

Simplifications

Only need to support-attribute index (recall that B+ tree may in general
index several attributes)

Deletions: you may use tombstones instead of merging/redistribution

— When an entry is deleted, it is replaced by a special marker indicating an empty slot
(which may be reused later)

— Tree nodes are never deleted or merged

Extra credit for implementing full textbook deletion algorithm (with
merging/redistribution) --- tricky!

— May help reduce I/Os when index is used subsequently for answering queries

No special support for bulk loading

Which of Three Alternatives?

Alternative 1 (keep record itself in tree): don't do this; you
should keep record ids, not records

Alternative 2 (<key,rid>) or Alternative 3 (<key, list of rids>):
either is OK; think about the tradeoffs before coding

Note, cannot assume all rids for a given key will fit on one
page

Handling Duplicates

If using Alternative 2 (<key, rid>), may have duplicate key
entries in internal nodes

If using Alternative 3 (<key, list of rids>), have to worry about
variable-length list of rids and page overflow

Allowed simplication (described in R&G): include record id in
the key — no duplicates, by construction!

— hence <key, rid> becomes the key

— downside: index uses more space (=> more |/Os)

— upside: deletions are faster (don't have to scan the duplicates)

How it All Fits Together

Three main classes: IndexManager, IndexHandle, and
IndexScan

IndexManager: create/delete/open/close B+ tree indices
IndexHandle: insert/delete records
IndexScan: perform comparison-based scans

Headers and skeleton classes will be added to your
repositories tonight

Coding Tips
"Use the debugger, not printf!" true in general; but every rule

has an exception

— You may find it helpful to write an IndexHandle::dumpTree() method
to output a human-readable picture of your B+ tree

For deletions, can assume at most one scan is open; deletions
can occur during the scan, of a certain form: you need to
allow deletions of some/all entries satisfying a condition

Get insertions working first, then scans, then deletions, then
deletions during scans

Keep it simple

Let's Go to the Doxygen Docs!
Already online at the usual place:

http://www.cs.ucdavis.edu/~green/courses/ecs165b/docs

