ECS 165B: Database System Implementation
Lecture 10

UC Davis
April 20, 2011

Acknowledgements: portions based on slides by Raghu Ramakrishnan and
Johannes Gehrke.

Class Agenda

* Last time:
— Overview of indexing

* Today:
— Tree-structured indexes, cont’d
— Overview of Project Part 2 (Indexing)

 Reading
— Chapter 14

Announcements

Project Part 2 out last night, due Sunday 5/1 @ 11:59pm

Files already in your repositories (svn update)

See http://www.cs.ucdavis.edu/~green/courses/ecs165b/
indexManager.html

Tree-Structured Indexes, cont’d

Deleting a Data Entry from a B+ Tree

Start at root, find leaf L where entry belongs.

Remove the entry.
— If Lis at least half-full, done!
— If L has only d-1 entries,

* Try to re-distribute, borrowing from sibling (adjacent
node with same parentas L).

* If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L or sibling)
from parent of L.

Merge could propagate to root, decreasing height.

Example Tree After (Inserting 8*, Then) Deleting 19*
and 20* ...

ROON

17

/'

e

[-\

\ \

27

30

y

T

ﬁ\;*

13
7*

X
* 14*(16*

8

221

24

27*

29*

33*

34*

38*

39*

Deleting 19* is easy.

Deleting 20* is done with re-distribution. Notice how

middle key is copied up.

... And Then Deleting 24*

\\\\\\\\\\\\ﬁi

* Must merge.
_ 30

* Observe toss’ of index :

entry (on right), and pull — / —

down’ of index entry 22+ | 27+ | 20 33+ | 34+ |38* | 30*

(below).

R;;;\\\\
5 13 17 30
KT z/////i:jj;x j P P

2* | 3" 54| 7| 8* 14* [16* 22* | 27*| 29* 33* | 34* | 38* [39*

Example of Non-leaf Re-distribution

* Tree is shown below during deletion of 24*. (What could be a
possible initial tree?)

Root\A

/’

13

17 20

/K\
* * *

22

\

In contrast to previous example, can re-distribute entry from
left child of root to right child.

Iy

30

| 16

174

18%

20%

217

227

27

29

m\&
A 33413443

8*

397

After Re-distribution

Intuitively, entries are re-distributed by pushing through’ the
splitting entry in the parent node.
It suffices to re-distribute index entry with key 20; we’ve re-
distributed 17 as well for illustration.

5 13

[A Il
/m! PR

ROCNA

17

ay

Za

20

22

30

2*

3* S* 7*| 8* 14*16*

177

184

21%

22%

277

297

33*

34*

38*

39*

Prefix Key Compression

* Important to increase fan-out. (Why?)

 Key values in index entries only ‘direct traffic’; can often
compress them.

- E.g., If we have adjacent index entries with search key values Dannon
Yogurt, David Smith and Devarakonda Murthy, we can abbreviate
David Smith to Dav. (The other keys can be compressed too ...)

* Is this correct? Not quite! What if there is a data entry Davey
Jones? (Can only compress David Smith to Davi)

* In general, while compressing, must leave each index entry
greater than every key value (in any subtree) to its left.

* |Insert/delete must be suitably modified.

Bulk Loading of a B+ Tree

If we have a large collection of records, and we want to create
a B+ tree on some field, doing so by repeatedly inserting
records is very slow.

Bulk Loading can be done much more efficiently.

Initialization: Sort all data entries, insert pointer to first (leaf)
page in a new (root) page.

Rok] _
Sorted pages of data entries; not yet in B+ tree

e

3* [4* ||| 6% | 9% | |10*|11*| |12*13%| [20*22* |23*|31* [35*[36%| [38*|41*| |44*

Bulk Loading (Contd.)

Root 10! |20

* |ndex entries for leaf / v

pages always entered 6 12 23135

| / | Il |

into right-most index j / J
£\ £\ £\

page just above leaf . /J !
level. When this fills | 34| | 6] 97| 10117 [12]13] |207224 [23131] |351367)||381417 |44

Data entry pages
not yet in B+ tree

-

up, it splits. (Split may
go up right-most path

to the root.) Root]| 20 \

* Much faster than | 10 | 35, Data entry pages
repeated inserts, / \ l \ notyetin B+ tree
especially when one 5 1 23 38
considers locking! ‘Z ' l / l / \

PR N YN N NN RN

3*[4*([6%]9*| [10%11% [121137 [20%22% (23%317 |35%36%| |38741%|||44"

Summary of Bulk Loading

* Option 1: multiple inserts.
— Slow.
— Does not give sequential storage of leaves.

* Option 2: Bulk Loading

— Has advantages for concurrency control.

— Fewer I/Os during build.
— Leaves will be stored sequentially (and linked, of course).
— Can control “fill factor” on pages.

A Note on Order’

Order (d) concept replaced by physical space criterion in

practice ("at least half-full’).
— Index pages can typically hold many more entries than leaf pages.
— Variable sized records and search keys mean differnt nodes will contain
different numbers of entries.

— Even with fixed length fields, multiple records with the same search key
value (duplicates) can lead to variable-sized data entries (if we use

Alternative (3)).

Summary

* Tree-structured indexes are ideal for range-searches, also good
for equality searches.

* B+ treeis a dynamic structure.

— Inserts/deletes leave tree height-balanced; log N cost.
— High fanout (F) means depth rarely more than 3 or 4.

— Almost always better than maintaining a sorted file.

— Typically, 67% occupancy on average.

— Usually preferable to ISAM, modulo /ocking considerations; adjusts to
growth gracefully.

— |If data entries are data records, splits can change rids!

Summary (Contd.)

Key compression increases fanout, reduces height.

Bulk loading can be much faster than repeated inserts for
creating a B+ tree on a large data set.

Most widely used index in database management systems
because of its versatility. One of the most optimized
components of a DBMS.

Overview of DavisDB, Part 2: Indexing

DavisDB, Part 2: Indexing

Second part of project: indexing component

Provides classes and methods for managing persistent
indexes on data in unordered heap files (i.e., record files)

Like RecordManager, uses page files underneath

In overall DavisDB architecture, sits side-by-side with
RecordFileManager on top of PageFileManager

Indexing structure we’ll use: B+ trees (with some
simplifications)

