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XML 

Semistructured Data 
Extensible Markup Language 
Document Type Definitions 

Slides due to Jeff Ullman @ Stanford, used with permission 
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Semistructured Data 

 Another data model, based on trees. 
 Motivation: flexible representation of data. 
  Often, data comes from multiple sources with 

differences in notation, meaning, etc. 

 Motivation: sharing of documents among 
systems and databases. 

 Motivation: semistructured data is out there 
  genomics databases 
  HTML pages, SGML documents 
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Graphs of Semistructured Data 

 Nodes = objects. 
 Labels on arcs (attributes, relationships). 
 Atomic values at leaf nodes (nodes with 

no arcs out). 
 Flexibility: no restriction on: 
  Labels out of a node. 
  Number of successors with a given label. 
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Example: Data Graph 
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The bar object 
for Joe’s Bar 

The beer object 
for Bud 

Notice a 
new kind 
of data. 
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XML 

 XML = Extensible Markup Language. 
 While HTML uses tags for formatting 

(e.g., “italic”), XML uses tags for 
semantics (e.g., “this is an address”). 

 Key idea: create tag sets for a domain 
(e.g., genomics), and translate all data 
into properly tagged XML documents. 
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Well-Formed and Valid XML 

 Well-Formed XML  allows you to invent 
your own tags. 
  Similar to labels in semistructured data. 

 Valid XML  involves a DTD (Document 
Type Definition), a grammar for tags. 
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Well-Formed XML 

 Start the document with a declaration, 
surrounded by <?xml … ?> . 

 Normal declaration is: 
<?xml version = “1.0” 
standalone = “yes” ?> 
  “Standalone” = “no DTD provided.” 

 Balance of document is a root tag 
surrounding nested tags. 
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Tags 

 Tags, as in HTML, are normally 
matched pairs, as <FOO> … </FOO> . 

 Tags may be nested arbitrarily. 
 XML tags are case sensitive. 
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Example: Well-Formed XML 

<?xml version = “1.0” standalone = “yes” ?> 
<BARS> 

 <BAR><NAME>Joe’s Bar</NAME> 
  <BEER><NAME>Bud</NAME> 
   <PRICE>2.50</PRICE></BEER> 
  <BEER><NAME>Miller</NAME> 
   <PRICE>3.00</PRICE></BEER> 
 </BAR> 
 <BAR> …  

</BARS> 

A NAME 
subobject 

A BEER 
subobject 
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XML and Semistructured Data 

 Well-Formed XML with nested tags is 
exactly the same idea as trees of 
semistructured data. 

 We shall see that XML also enables 
nontree structures, as does the 
semistructured data model. 
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Example 

 The <BARS> XML document is: 

Joe’s Bar 

Bud 2.50 Miller 3.00 

PRICE 

BAR 
BAR 

BARS 

NAME . . . 

BAR 

PRICE NAME 

BEER 
BEER 

NAME 
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DTD Structure 

<!DOCTYPE <root tag> [ 
 <!ELEMENT <name>(<components>)> 
 . . . more elements . . . 
]> 
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DTD Elements 

 The description of an element consists 
of its name (tag), and a parenthesized 
description of any nested tags. 
  Includes order of subtags and their 

multiplicity. 

 Leaves (text elements) have #PCDATA 
(Parsed Character DATA ) in place of 
nested tags. 
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Example: DTD 

<!DOCTYPE BARS [ 
 <!ELEMENT BARS (BAR*)> 
 <!ELEMENT BAR (NAME, BEER+)> 
 <!ELEMENT NAME (#PCDATA)> 
 <!ELEMENT BEER (NAME, PRICE)> 
 <!ELEMENT PRICE (#PCDATA)> 

]> 

A BARS object has 
zero or more BAR’s 
nested within. 

A BAR has one 
NAME and one 
or more BEER 
subobjects. 

A BEER has a 
NAME and a 
PRICE. 

NAME and PRICE 
are text. 
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Element Descriptions 

 Subtags must appear in order shown. 
 A tag may be followed by a symbol to 

indicate its multiplicity. 
  * = zero or more. 
  + = one or more. 
  ? = zero or one. 

 Symbol | can connect alternative 
sequences of tags. 
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Example: Element Description 

 A name is an optional title (e.g., “Prof.”), 
a first name, and a last name, in that 
order, or it is an IP address: 

<!ELEMENT NAME ( 

 (TITLE?, FIRST, LAST) | IPADDR 

)> 
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Use of DTD’s 

1.  Set standalone = “no”. 
2.  Either: 

a)  Include the DTD as a preamble of the 
XML document, or 

b)  Follow DOCTYPE and the <root tag> by 
SYSTEM and a path to the file where the 
DTD can be found. 
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Example (a) 
<?xml version = “1.0” standalone = “no” ?> 
<!DOCTYPE BARS [ 

 <!ELEMENT BARS (BAR*)> 
 <!ELEMENT BAR (NAME, BEER+)> 
 <!ELEMENT NAME (#PCDATA)> 
 <!ELEMENT BEER (NAME, PRICE)> 
 <!ELEMENT PRICE (#PCDATA)> 

]> 
<BARS> 

 <BAR><NAME>Joe’s Bar</NAME> 
  <BEER><NAME>Bud</NAME> <PRICE>2.50</PRICE></BEER> 
  <BEER><NAME>Miller</NAME> <PRICE>3.00</PRICE></BEER> 
 </BAR>  
 <BAR> …  

</BARS> 

The DTD 

The document 
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Example (b) 

 Assume the BARS DTD is in file bar.dtd. 
<?xml version = “1.0” standalone = “no” ?> 
<!DOCTYPE BARS SYSTEM “bar.dtd”> 
<BARS> 

 <BAR><NAME>Joe’s Bar</NAME> 
  <BEER><NAME>Bud</NAME> 
   <PRICE>2.50</PRICE></BEER> 
  <BEER><NAME>Miller</NAME> 
   <PRICE>3.00</PRICE></BEER> 
 </BAR> 
 <BAR> …  

</BARS> 

 

Get the DTD 
from the file 
bar.dtd 
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Attributes 

 Opening tags in XML can have 
attributes. 

 In a DTD, 
<!ATTLIST E . . . >  
 declares an attribute for element E, 
along with its datatype. 
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Example: Attributes 

 Bars can have an attribute kind, a 
character string describing the bar. 

<!ELEMENT BAR (NAME BEER*)> 

 <!ATTLIST BAR kind CDATA 
 #IMPLIED> 

Character string 
type; no tags 

Attribute is optional 
opposite: #REQUIRED 
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Example: Attribute Use 

 In a document that allows BAR tags, we might 
see: 

<BAR kind = “sushi”> 

 <NAME>Akasaka</NAME> 

 <BEER><NAME>Sapporo</NAME> 

   <PRICE>5.00</PRICE></BEER> 

 ... 

</BAR> 

Note attribute 
values are quoted 
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ID’s and IDREF’s 

 Attributes can be pointers from one 
object to another. 
  Compare to HTML’s NAME = “foo” and 

HREF = “#foo”. 

 Allows the structure of an XML 
document to be a general graph, rather 
than just a tree. 
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Creating ID’s 

 Give an element E  an attribute A of 
type ID. 

 When using tag <E > in an XML 
document, give its attribute A  a unique 
value. 

 Example: 
  <E  A = “xyz”> 
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Creating IDREF’s 

 To allow objects of type F  to refer to 
another object with an ID attribute, give 
F  an attribute of type IDREF. 

 Or, let the attribute have type IDREFS, 
so the F –object can refer to any 
number of other objects. 
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Example: ID’s and IDREF’s 

 Let’s redesign our BARS DTD to include both 
BAR and BEER subelements. 

 Both bars and beers will have ID attributes 
called name. 

 Bars have SELLS subobjects, consisting of a 
number (the price of one beer) and an IDREF 
theBeer leading to that beer. 

 Beers have attribute soldBy, which is an 
IDREFS leading to all the bars that sell it. 
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The DTD 
<!DOCTYPE BARS [ 

 <!ELEMENT BARS (BAR*, BEER*)> 
 <!ELEMENT BAR (SELLS+)> 
  <!ATTLIST BAR name ID #REQUIRED> 
 <!ELEMENT SELLS (#PCDATA)> 
  <!ATTLIST SELLS theBeer IDREF #REQUIRED> 
 <!ELEMENT BEER EMPTY> 
  <!ATTLIST BEER name ID #REQUIRED> 
  <!ATTLIST BEER soldBy IDREFS #IMPLIED> 

]> 

 
Beer elements have an ID attribute called name, 
and a soldBy attribute that is a set of Bar names. 

SELLS elements 
have a number 
(the price) and 
one reference 
to a beer. 

Bar elements have name 
as an ID attribute and 
have one or more 
SELLS subelements. 

Explained 
next 
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Example Document 

<BARS> 
 <BAR name = “JoesBar”> 
  <SELLS theBeer = “Bud”>2.50</SELLS> 
  <SELLS theBeer = “Miller”>3.00</SELLS> 
 </BAR> … 
 <BEER name = “Bud” soldBy = “JoesBar 
  SuesBar …”/> … 
 </BARS> 
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Empty Elements 

 We can do all the work of an element in 
its attributes. 
  Like BEER in previous example. 

 Another example: SELLS elements could 
have attribute price rather than a 
value that is a price. 
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Example: Empty Element 

 In the DTD, declare: 
<!ELEMENT SELLS EMPTY> 
 <!ATTLIST SELLS theBeer IDREF #REQUIRED> 
 <!ATTLIST SELLS price CDATA #REQUIRED> 
 Example use: 
<SELLS theBeer = “Bud” price = “2.50”/> 

Note exception to 
“matching tags” rule 


