
1

XML

Semistructured Data
Extensible Markup Language
Document Type Definitions

Slides due to Jeff Ullman @ Stanford, used with permission

2

Semistructured Data

 Another data model, based on trees.
 Motivation: flexible representation of data.
  Often, data comes from multiple sources with

differences in notation, meaning, etc.

 Motivation: sharing of documents among
systems and databases.

 Motivation: semistructured data is out there
  genomics databases
  HTML pages, SGML documents

3

Graphs of Semistructured Data

 Nodes = objects.
 Labels on arcs (attributes, relationships).
 Atomic values at leaf nodes (nodes with

no arcs out).
 Flexibility: no restriction on:
  Labels out of a node.
  Number of successors with a given label.

4

Example: Data Graph

Bud

A.B.

Gold 1995

Maple Joe’s

M’lob

beer beer
bar

manf manf

servedAt

name

name
name

addr

prize

year award

root

The bar object
for Joe’s Bar

The beer object
for Bud

Notice a
new kind
of data.

5

XML

 XML = Extensible Markup Language.
 While HTML uses tags for formatting

(e.g., “italic”), XML uses tags for
semantics (e.g., “this is an address”).

 Key idea: create tag sets for a domain
(e.g., genomics), and translate all data
into properly tagged XML documents.

6

Well-Formed and Valid XML

 Well-Formed XML allows you to invent
your own tags.
  Similar to labels in semistructured data.

 Valid XML involves a DTD (Document
Type Definition), a grammar for tags.

7

Well-Formed XML

 Start the document with a declaration,
surrounded by <?xml … ?> .

 Normal declaration is:
<?xml version = “1.0”
standalone = “yes” ?>
  “Standalone” = “no DTD provided.”

 Balance of document is a root tag
surrounding nested tags.

8

Tags

 Tags, as in HTML, are normally
matched pairs, as <FOO> … </FOO> .

 Tags may be nested arbitrarily.
 XML tags are case sensitive.

9

Example: Well-Formed XML

<?xml version = “1.0” standalone = “yes” ?>
<BARS>

 <BAR><NAME>Joe’s Bar</NAME>
 <BEER><NAME>Bud</NAME>
 <PRICE>2.50</PRICE></BEER>
 <BEER><NAME>Miller</NAME>
 <PRICE>3.00</PRICE></BEER>
 </BAR>
 <BAR> …

</BARS>

A NAME
subobject

A BEER
subobject

10

XML and Semistructured Data

 Well-Formed XML with nested tags is
exactly the same idea as trees of
semistructured data.

 We shall see that XML also enables
nontree structures, as does the
semistructured data model.

11

Example

 The <BARS> XML document is:

Joe’s Bar

Bud 2.50 Miller 3.00

PRICE

BAR
BAR

BARS

NAME . . .

BAR

PRICE NAME

BEER
BEER

NAME

12

DTD Structure

<!DOCTYPE <root tag> [
 <!ELEMENT <name>(<components>)>
 . . . more elements . . .
]>

13

DTD Elements

 The description of an element consists
of its name (tag), and a parenthesized
description of any nested tags.
  Includes order of subtags and their

multiplicity.

 Leaves (text elements) have #PCDATA
(Parsed Character DATA) in place of
nested tags.

14

Example: DTD

<!DOCTYPE BARS [
 <!ELEMENT BARS (BAR*)>
 <!ELEMENT BAR (NAME, BEER+)>
 <!ELEMENT NAME (#PCDATA)>
 <!ELEMENT BEER (NAME, PRICE)>
 <!ELEMENT PRICE (#PCDATA)>

]>

A BARS object has
zero or more BAR’s
nested within.

A BAR has one
NAME and one
or more BEER
subobjects.

A BEER has a
NAME and a
PRICE.

NAME and PRICE
are text.

15

Element Descriptions

 Subtags must appear in order shown.
 A tag may be followed by a symbol to

indicate its multiplicity.
  * = zero or more.
  + = one or more.
  ? = zero or one.

 Symbol | can connect alternative
sequences of tags.

16

Example: Element Description

 A name is an optional title (e.g., “Prof.”),
a first name, and a last name, in that
order, or it is an IP address:

<!ELEMENT NAME (

 (TITLE?, FIRST, LAST) | IPADDR

)>

17

Use of DTD’s

1.  Set standalone = “no”.
2.  Either:

a)  Include the DTD as a preamble of the
XML document, or

b)  Follow DOCTYPE and the <root tag> by
SYSTEM and a path to the file where the
DTD can be found.

18

Example (a)
<?xml version = “1.0” standalone = “no” ?>
<!DOCTYPE BARS [

 <!ELEMENT BARS (BAR*)>
 <!ELEMENT BAR (NAME, BEER+)>
 <!ELEMENT NAME (#PCDATA)>
 <!ELEMENT BEER (NAME, PRICE)>
 <!ELEMENT PRICE (#PCDATA)>

]>
<BARS>

 <BAR><NAME>Joe’s Bar</NAME>
 <BEER><NAME>Bud</NAME> <PRICE>2.50</PRICE></BEER>
 <BEER><NAME>Miller</NAME> <PRICE>3.00</PRICE></BEER>
 </BAR>
 <BAR> …

</BARS>

The DTD

The document

19

Example (b)

 Assume the BARS DTD is in file bar.dtd.
<?xml version = “1.0” standalone = “no” ?>
<!DOCTYPE BARS SYSTEM “bar.dtd”>
<BARS>

 <BAR><NAME>Joe’s Bar</NAME>
 <BEER><NAME>Bud</NAME>
 <PRICE>2.50</PRICE></BEER>
 <BEER><NAME>Miller</NAME>
 <PRICE>3.00</PRICE></BEER>
 </BAR>
 <BAR> …

</BARS>

Get the DTD
from the file
bar.dtd

20

Attributes

 Opening tags in XML can have
attributes.

 In a DTD,
<!ATTLIST E . . . >
 declares an attribute for element E,
along with its datatype.

21

Example: Attributes

 Bars can have an attribute kind, a
character string describing the bar.

<!ELEMENT BAR (NAME BEER*)>

 <!ATTLIST BAR kind CDATA
 #IMPLIED>

Character string
type; no tags

Attribute is optional
opposite: #REQUIRED

22

Example: Attribute Use

 In a document that allows BAR tags, we might
see:

<BAR kind = “sushi”>

 <NAME>Akasaka</NAME>

 <BEER><NAME>Sapporo</NAME>

 <PRICE>5.00</PRICE></BEER>

 ...

</BAR>

Note attribute
values are quoted

23

ID’s and IDREF’s

 Attributes can be pointers from one
object to another.
  Compare to HTML’s NAME = “foo” and

HREF = “#foo”.

 Allows the structure of an XML
document to be a general graph, rather
than just a tree.

24

Creating ID’s

 Give an element E an attribute A of
type ID.

 When using tag <E > in an XML
document, give its attribute A a unique
value.

 Example:
 <E A = “xyz”>

25

Creating IDREF’s

 To allow objects of type F to refer to
another object with an ID attribute, give
F an attribute of type IDREF.

 Or, let the attribute have type IDREFS,
so the F –object can refer to any
number of other objects.

26

Example: ID’s and IDREF’s

 Let’s redesign our BARS DTD to include both
BAR and BEER subelements.

 Both bars and beers will have ID attributes
called name.

 Bars have SELLS subobjects, consisting of a
number (the price of one beer) and an IDREF
theBeer leading to that beer.

 Beers have attribute soldBy, which is an
IDREFS leading to all the bars that sell it.

27

The DTD
<!DOCTYPE BARS [

 <!ELEMENT BARS (BAR*, BEER*)>
 <!ELEMENT BAR (SELLS+)>
 <!ATTLIST BAR name ID #REQUIRED>
 <!ELEMENT SELLS (#PCDATA)>
 <!ATTLIST SELLS theBeer IDREF #REQUIRED>
 <!ELEMENT BEER EMPTY>
 <!ATTLIST BEER name ID #REQUIRED>
 <!ATTLIST BEER soldBy IDREFS #IMPLIED>

]>

Beer elements have an ID attribute called name,
and a soldBy attribute that is a set of Bar names.

SELLS elements
have a number
(the price) and
one reference
to a beer.

Bar elements have name
as an ID attribute and
have one or more
SELLS subelements.

Explained
next

28

Example Document

<BARS>
 <BAR name = “JoesBar”>
 <SELLS theBeer = “Bud”>2.50</SELLS>
 <SELLS theBeer = “Miller”>3.00</SELLS>
 </BAR> …
 <BEER name = “Bud” soldBy = “JoesBar
 SuesBar …”/> …
 </BARS>

29

Empty Elements

 We can do all the work of an element in
its attributes.
  Like BEER in previous example.

 Another example: SELLS elements could
have attribute price rather than a
value that is a price.

30

Example: Empty Element

 In the DTD, declare:
<!ELEMENT SELLS EMPTY>
 <!ATTLIST SELLS theBeer IDREF #REQUIRED>
 <!ATTLIST SELLS price CDATA #REQUIRED>
 Example use:
<SELLS theBeer = “Bud” price = “2.50”/>

Note exception to
“matching tags” rule

