ECS 165B: Database System Implementation
Lecture 17

UC Davis
May 5, 2010

Class Agenda

e Last time:
— Introduction to XML

* Today:
— Overview of DavisDB Part 3: System Manager
— Mid-course evaluation

* Reading:

— none

Announcements

DavisDB Part 3 due Tuesday 5/11 @11:59pm

Necessary files already in your repositories

DavisDB, Part 3: System Manager

Your Mission, Should You Choose to Accept It

 We provide a command-line shell interface (SystemParser)
— create / drop / open / close database
— create / drop / bulk-load / print tables
— create / drop indices

— list relations in database, information about their attributes

* You implement the backing functionality (SystemManager)

— the operations above (using RecordManager and IndexManager)

— plus, system catalogs

DavisDB System Catalogs

 Two system catalogs — relations and attributes — maintain
metadata about tables, their attributes, and indices

e (Catalogs are tables too; create using RecordManager

* Exact contents of these tables is up to you! E.g.,

relations relName Name of the relation

relName Name of the relation attrName Name of the attribute

recordSize Length of a record in attrNo
relation in bytes

nAttributes Number of attributes

Number of the attribute
attrType Type of the attribute
attrLength Length of the attribute in bytes
offset Offset from beginning of record

hasIndex Has a B+ tree index?

DavisDB System Catalogs (2)

* (Catalog tables should include information about the catalog
tables themselves!

 So, even if database has no other tables:

- relations table should have two tuples (one for
relations, one for attributes)

— attributes table should have rows for the attributes in
catalog tables

The Command-Line Shell

quatchi:src green$./DavisDB
Welcome to the DavisDB command-1Tine shell.
Type "help;" for help.

The Command-Line Shell: Commands

create database <dbName> ;
drop database <dbName> ;
open database <dbName> ;
close database ;
create table <tableName> (<attrName> <attrType>, ...,
<attrName> <attrType>) ;
where <attrType> 1is either float, int, or char(<length>)
drop table <tableName> ;
create index <tableName> (<attrName>) ;
drop 1ndex <tableName (<attrName>) ;
load <tableName> <fileName> ;
info ;
info <tableName> ;
print <tableName> ;

(implemented by corresponding
SystemManager methods)

10 print ;

10 reset ;
help ; $\\\\\\ print or reset page
quit ; |/O statistics

(built-in shell commands)

create database <dbName> <&
SystemManager: :createDb

* Database should be created in a new subdirectory dbName
1. mkdir(dbName)

2. chdir(dbName)

3. create system catalogs

4. chdir("..™)

e Useful Linux library commands: mkdir, chdir

— #include <sys/stat.h>

open database <dbName> <
SystemManager: :openDb

1. chdir(dbName)

2. Open system catalogs and keep them open (they will be used
heavily)

close database &
SystemManager: :closeDb

1. Close system catalog tables

2. chdir("..™)

drop database <dbName> &
SystemManager: :dropDb

1. system("rm -rf <dbName>")

— Needto #include <stdlib.h>

create table <relName>(...) <&
SystemManager: :createTable

1. Create the specified table (RecordManager)

2. Update system catalogs to record information about table
and its attribute

create 1ndex <relName>(<attrName>) &
SystemManager: :createlIndex

Open table (RecordManager)
Create a new B+ tree index (IndexManager)

For each record in table (RecordFileScan)

1. Insert key, recordID into index

Update system catalogs to reflect existence of index

load <relName> <fileName>
SystemManager: : load

1. Bulk-load the contents of comma-separated file into table

2. For each line in file:
1. Parse the line, create a record
2. Insert record into table

3. Insert keys for record into any indices

 How to read the file:
(C) #include <stdio.h>; use fopen, getc*, fclose

(C++) #include <fstream>; use ifstream::open,
ifstream::getline*, ifstream::close

* How to parse a line:
— lines look like "22,Dustin,7,45.0" — no commas inside strings

— use strtok (<string.h>), strtol and strtol (<stdlib.h>)

print <relName> &
SystemManager: :print

Open the table (RecordManager)
Open a scan on the table (RecordFileScan)
Call SystemPrinter::printHeader to print table header

For each record in table

1. Call SystemPrinter::printRecord to print record
Call SystemPrinter::printFooter to print table footer
Close scan and table

SystemPrinter is provided for you, don't change

print: Sample Output

quatchi:src green$./DavisDB
Welcome to the DavisDB command-Tine shell.
Type "help;" for help.
open database Boathouse;
=> RC_OK
print Boats;
Boats.bid int, Boats.bname char(32), Boats.color char(16))
101, Interlake,blue
102,Interlake, red
103,Clipper,green
104 ,Marine, red
4 records total.
=> RC_OK

Testing: Boathouse.ddb and Sailors.csv, Boats.csvy,
Reserves.csv

Boathouse.ddb: a sample DavisDB session exercising most of
the SystemManager functionality

quatchi:src green$./DavisDB < Boathouse.ddb
Uses Toad to populate tables with data from *.csv

Make your own tests too!

Debugging Strategies

 Many debuggers (e.g., Eclipse) don't support debugging
console applications very well

— Ul debugging in general can be problematic!
* Script files like Boathouse.ddb can be extremely useful

— e.g., ingdb, use "run params < Boathouse.ddb" to pipe input
from the file

Guidelines and Tips

Make plenty of helper functions to access system catalogs for
specific relations and/or attributes!

— These will be needed now (for code cleanliness) and later (in Part 4)

Don't forget to insert descriptions for attributes and
relations into attributes and relations

Use RecordFileHandle: :forceAl1Pages when you modify
the catalog tables

— To avoid seeing stale data when youdo print attributes orprint
relations

Don't forget to update indices when you update tables

Should allow creating indices on catalog tables; should
disallow drop or load of catalog tables

Guidelines and Tips (2)

* This part of the project is definitely easier than Parts 1 and 2,
but still takes a while

 Don't put it off to the last minute!

