
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Evaluation of Relational Operations

Chapter 14, Part A (Joins)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Relational Operations

v  We will consider how to implement:
§  Selection () Selects a subset of rows from relation.
§  Projection () Deletes unwanted columns from relation.
§  Join () Allows us to combine two relations.
§  Set-difference () Tuples in reln. 1, but not in reln. 2.
§  Union () Tuples in reln. 1 and in reln. 2.
§  Aggregation (SUM, MIN, etc.) and GROUP BY

v  Since each op returns a relation, ops can be composed!
After we cover the operations, we will discuss how to
optimize queries formed by composing them.

σ
π

−

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Schema for Examples

v  Similar to old schema; rname added for variations.
v  Reserves:

§  Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.

v  Sailors:
§  Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Equality Joins With One Join Column

v  In algebra: R S. Common! Must be carefully
optimized. R S is large; so, R S followed by a
selection is inefficient.

v  Assume: M tuples in R, pR tuples per page, N tuples
in S, pS tuples per page.
§  In our examples, R is Reserves and S is Sailors.

v  We will consider more complex join conditions later.
v  Cost metric: # of I/Os. We will ignore output costs.

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid=S1.sid

× ×

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Simple Nested Loops Join

v  For each tuple in the outer relation R, we scan the
entire inner relation S.
§  Cost: M + pR * M * N = 1000 + 100*1000*500 I/Os.

v  Page-oriented Nested Loops join: For each page of R,
get each page of S, and write out matching pairs of
tuples <r, s>, where r is in R-page and S is in S-page.
§  Cost: M + M*N = 1000 + 1000*500
§  If smaller relation (S) is outer, cost = 500 + 500*1000

foreach tuple r in R do
 foreach tuple s in S do
 if ri == sj then add <r, s> to result

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Index Nested Loops Join

v  If there is an index on the join column of one relation
(say S), can make it the inner and exploit the index.
§  Cost: M + ((M*pR) * cost of finding matching S tuples)

v  For each R tuple, cost of probing S index is about 1.2
for hash index, 2-4 for B+ tree. Cost of then finding S
tuples (assuming Alt. (2) or (3) for data entries)
depends on clustering.
§  Clustered index: 1 I/O (typical), unclustered: up to 1 I/O

per matching S tuple.

foreach tuple r in R do
 foreach tuple s in S where ri == sj do
 add <r, s> to result

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Examples of Index Nested Loops

v  Hash-index (Alt. 2) on sid of Sailors (as inner):
§  Scan Reserves: 1000 page I/Os, 100*1000 tuples.
§  For each Reserves tuple: 1.2 I/Os to get data entry in index,

plus 1 I/O to get (the exactly one) matching Sailors tuple.
Total: 220,000 I/Os.

v  Hash-index (Alt. 2) on sid of Reserves (as inner):
§  Scan Sailors: 500 page I/Os, 80*500 tuples.
§  For each Sailors tuple: 1.2 I/Os to find index page with

data entries, plus cost of retrieving matching Reserves
tuples. Assuming uniform distribution, 2.5 reservations
per sailor (100,000 / 40,000). Cost of retrieving them is 1 or
2.5 I/Os depending on whether the index is clustered.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Block Nested Loops Join

v  Use one page as an input buffer for scanning the
inner S, one page as the output buffer, and use all
remaining pages to hold ``block’’ of outer R.
§  For each matching tuple r in R-block, s in S-page, add

<r, s> to result. Then read next R-block, scan S, etc.

. . .

. . .

R & S
Hash table for block of R

(k < B-1 pages)

Input buffer for S Output buffer

. . .

Join Result

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Examples of Block Nested Loops
v  Cost: Scan of outer + #outer blocks * scan of inner

§  #outer blocks =

v  With Reserves (R) as outer, and 100 pages of R:
§  Cost of scanning R is 1000 I/Os; a total of 10 blocks.
§  Per block of R, we scan Sailors (S); 10*500 I/Os.
§  If space for just 90 pages of R, we would scan S 12 times.

v  With 100-page block of Sailors as outer:
§  Cost of scanning S is 500 I/Os; a total of 5 blocks.
§  Per block of S, we scan Reserves; 5*1000 I/Os.

v  With sequential reads considered, analysis changes:
may be best to divide buffers evenly between R and S.

⎡ ⎤# /of pages of outer blocksize

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Sort-Merge Join (R S)
v  Sort R and S on the join column, then scan them to do

a ``merge’’ (on join col.), and output result tuples.
§  Advance scan of R until current R-tuple >= current S tuple,

then advance scan of S until current S-tuple >= current R
tuple; do this until current R tuple = current S tuple.

§  At this point, all R tuples with same value in Ri (current R
group) and all S tuples with same value in Sj (current S
group) match; output <r, s> for all pairs of such tuples.

§  Then resume scanning R and S.

v  R is scanned once; each S group is scanned once per
matching R tuple. (Multiple scans of an S group are
likely to find needed pages in buffer.)

i=j

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Example of Sort-Merge Join

v  Cost: M log M + N log N + (M+N)
§  The cost of scanning, M+N, could be M*N (very unlikely!)

v  With 35, 100 or 300 buffer pages, both Reserves and
Sailors can be sorted in 2 passes; total join cost: 7500.

sid sname rating age
22 dustin 7 45.0
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day rname
28 103 12/4/96 guppy
28 103 11/3/96 yuppy
31 101 10/10/96 dustin
31 102 10/12/96 lubber
31 101 10/11/96 lubber
58 103 11/12/96 dustin

(BNL cost: 2500 to 15000 I/Os)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Refinement of Sort-Merge Join
v  We can combine the merging phases in the sorting of

R and S with the merging required for the join.
§  With B > , where L is the size of the larger relation, using

the sorting refinement that produces runs of length 2B in
Pass 0, #runs of each relation is < B/2.

§  Allocate 1 page per run of each relation, and `merge’ while
checking the join condition.

§  Cost: read+write each relation in Pass 0 + read each relation
in (only) merging pass (+ writing of result tuples).

§  In example, cost goes down from 7500 to 4500 I/Os.

v  In practice, cost of sort-merge join, like the cost of
external sorting, is linear.

L

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Hash-Join
v  Partition both

relations using hash
fn h: R tuples in
partition i will only
match S tuples in
partition i.

v  Read in a partition
of R, hash it using
h2 (<> h!). Scan
matching partition
of S, search for
matches.

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffers Disk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers Disk Disk

Original
Relation OUTPUT

2 INPUT

1

hash function
h B-1

Partitions

1

2

B-1

. . .

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Observations on Hash-Join

v  #partitions k < B-1 (why?), and B-2 > size of largest
partition to be held in memory. Assuming uniformly
sized partitions, and maximizing k, we get:
§  k= B-1, and M/(B-1) < B-2, i.e., B must be >

v  If we build an in-memory hash table to speed up the
matching of tuples, a little more memory is needed.

v  If the hash function does not partition uniformly, one
or more R partitions may not fit in memory. Can
apply hash-join technique recursively to do the join
of this R-partition with corresponding S-partition.

M

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Cost of Hash-Join

v  In partitioning phase, read+write both relns; 2(M+N).
In matching phase, read both relns; M+N I/Os.

v  In our running example, this is a total of 4500 I/Os.
v  Sort-Merge Join vs. Hash Join:

§  Given a minimum amount of memory (what is this, for each?)
both have a cost of 3(M+N) I/Os. Hash Join superior on
this count if relation sizes differ greatly. Also, Hash Join
shown to be highly parallelizable.

§  Sort-Merge less sensitive to data skew; result is sorted.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

General Join Conditions
v  Equalities over several attributes (e.g., R.sid=S.sid

AND R.rname=S.sname):
§  For Index NL, build index on <sid, sname> (if S is inner); or

use existing indexes on sid or sname.
§  For Sort-Merge and Hash Join, sort/partition on

combination of the two join columns.

v  Inequality conditions (e.g., R.rname < S.sname):
§  For Index NL, need (clustered!) B+ tree index.

• Range probes on inner; # matches likely to be much higher than for
equality joins.

§  Hash Join, Sort Merge Join not applicable.
§  Block NL quite likely to be the best join method here.

