ECS 165B: Database System Implementation
Lecture 2

UC Davis, Spring 2011

Portions of slides based on earlier ones by Raghu Ramakrishnan, Johannes
Gehrke, Jennifer Widom, Bertram Ludaescher, and Michael Gertz.

Announcements

No class Friday (NorCal Database Day 2011 @ UCD)
http://dbday.cs.ucdavis.edu

Warmup homework assignment (serialization and memory
management in C++) out later today, due Sunday @ 11:59pm

Project starts with forming teams on Monday

Today’s Agenda
Coding skills: serialization and memory management in C++
File and buffer management in a DBMS

Reading: Chapter 13 of textbook

Coding Skills: Memory Management in C++

Much of DavisDB project work (starting with part 1) will require
writing serialization and deserialization code

Students last year had trouble with this, hence we’ll cover the
basics up front (and get some practice in the “warmup
homework”)

Coding Skills: Memory Management in C++

DBMS is a long-running server process, cannot afford to leak
memory

Many (most) “real” applications are like this: web servers, GUI
applications, operating system device drivers, ...

In DavisDB, you’ll be required to clean up memory resources
properly

What’s Wrong With This Code?

class Foo {
char* str_;

void setString(char* str) {
str_ = strdup(str);
}

~Foo() {
}
}s

What’s Wrong With This Code?

class Foo {
char* str_ = 0;

void setString(const char* str) {

if (str_ !'= 0) {
free(str_);
}
str_ = strdup(str);
}
~Foo() {
if (str_ != 0) {
free(str_);
str_ = 0;
}
}

Basic Idea in Memory Management
Allocated memory must be freed when no longer needed

Don’t have to worry about this (as much) in garbage-collected
languages like Java, C#, Python, etc

Definitely do have to worry about this in C/C++

To be a good C/C++ programmer, need to become very
disciplined about memory management

How to Allocate and Free Memory in C++

Confusingly, there are three ways to allocate memory from the heap
in C++:malloc, new, and new[]

malloc inherited from C, used by C library routines like strdup
new typed, object-oriented version of malloc;

used to allocate a single object
new|] used to allocate an array of objects

Memory must be freed differently depending on how it was allocated:

malloc <-> free
new <-> delete
new|] <-> deletel]

How to Remember to Free Unused Memory

Whenever you write a piece of code allocating some memory,
you already must be thinking about who will free it, where

and when

Ownership of memory must be very clearly understood

DESCRIPTION
The strdup() function allocates sufficient memory for a copy of the string s1, does the copy,

and returns a pointer to it. The pointer may subsequently be used as an argument to the
function free(3).

With strdup, it is clear that the caller owns the returned memory

So What’s Wrong With This Code?

struct Point {
int X;
int y;

}

Point* foo(int x, int y) {
Point p;
Pp.X = X;
p.y =Y;
return &p;

}

void bar() {
Point* point = foo(1,2);
delete point;

}

So What’s Wrong With This Code?

struct Point {
int X;
int y;

}

Point* foo(int x, int y) {
Point p;
p.X = X;
p.y =Y;
return &p; // uh-oh, returning a pointer to stack-
// allocated memory. big no-no.

}

void bar() {
Point* point = foo(l,2);
delete point;

}

So What’s Wrong With This Code?

struct Point {

int X;
int y;
}
void foo(int x, 1int vy,
Point* p) {
p->X = X;
p->y =Y;

void bar() {
Point point;
foo(1,2, &point);

struct Point {
int X;
int y;

}

Point* foo(int x, int y) {
Point* p = new Point();

p->X = X;
pP=>y =Y,
return p;

void bar() {
Point p = foo(1,2);
delete p;

Finding Memory Leaks

Very useful and easy-to-use tool on Unix-based platforms
(including CSIF): valgrind

Usage: valgrind [options] <prog-and-args>

Will tell you if you’ve leaked memory, and where it was
allocated

We’'ll use this in the warmup homework, and in grading your
project components

Smart Pointers: a Useful C++ Idiom for Memory
Management

Basic idea: instead of working with “raw” pointer, like

Foo* ptr = new Foo(l);
ptr = new Foo(2); // oops, leaked the first object

work with a “wrapped” version that automatically frees the
underlying object when leaving scope

std: :auto_ptr<Foo> ptr = new Foo(l);

ptr = new Foo(2); // first object deleted automatically
// on assignment

Smart Pointers: Pros and Cons

Pros: automates away much of the grunt work of memory
management; great idea so long as used uniformly in a code
base and all developers involved understand them

Cons: no free lunch, still need to understand underlying memory
management concepts, plus smart pointers introduce their
owh complexities; bad idea to mix code that uses smart
pointers with code that doesn’t (very confusing)

Since this is a “DIY” class and you need to understand memory
management anyway, we’ll forego smart pointers

Serialization/Deserialization

Serialization (aka marshalling): conversion of data structure or
object into format that can be stored (e.g., in file or memory
buffer, or transmitted on network) and deserialized (or
unmarshalled) later to recover data structure/object

As with memory management and smart pointers, some
standard facilities (e.g., Boost serialization library) exist to
help with this

But in the spirit of DIY (and avoiding going deeply into Boost
libraries), we’ll do it ourselves in this class

Primitive for Serialization: memcpy

Given a structure Foo, how to serialize Foo into a byte-buffer?

struct Foo {
int X;
float y;
} f1 = {1, 0.5};
char buffer[128];
memcpy (buffer, &fl, sizeof(fl));

How to deserialize? Use memcpy again:

struct Foo f2;
memcpy (&f2, buffer, sizeof(f2));

Serialization Gotchas

One problem with preceding approach: deserializing Foo on
another machine may not work properly

- endianness issues
- size of data types (32-bit vs. 64-bit vs. ...)
We'll ignore this issue for DavisDB (single-machine)

Second problem: versioning. Suppose a later version of code
adds a third field to Foo. What can go wrong?

We'll ignore this issue too for DavisDB (single-version)

Third problem, this one we do need to worry about for DavisDB:
memcpy of the structure only works for “plain old data”...

What’s Wrong Here?

struct Bar {

int X;

char* str;
¥
char buffer[128];
char str[] = new char[64];
sprintf(str, “hello, world!”);
struct Bar bar = {1, str};
memcpy (buffer, &bar, sizeof(bar));
delete[] str;

memcpy (&bar, buffer, sizeof(bar));

What’s Wrong Here?

struct Bar {
int X;
char* str; // structure 1s not “plain old data”
};
char buffer[128];
char str[] = new char[64];
sprintf(str, “hello, world!”);
struct Bar bar = {1, str};
memcpy (buffer, &bar, sizeof(bar));
delete[] str;

memcpy (&bar, buffer, sizeof(bar)); // bar will have
// bad str
// pointer

The Fix: Custom Serialize/Deserialize Methods

class Bar {

int X;

char* str = 0;

void serialize(char* buffer) {
memcpy (buffer, &x, sizeof(x));
int len = strilen(str);
memcpy (buffer+sizeof(x), &len, sizeof(len));
memcpy (buffer+sizeof(x)+sizeof(len), str,

len*sizeof(char));

}

static Bar* deserialize(char* buffer) {
Bar* bar = new Bar();
memcpy (&(bar->x), buffer, sizeof(bar->x));
int len;
memcpy (&len, buffer+sizeof(bar->x), sizeof(len));
bar->str = new char[len+1];
memcpy (bar->str, buffer+sizeof(bar->x)+sizeof(len),

lTen*sizeof(char));

The Fix: Custom Serialize/Deserialize Methods

Usage:

Bar b;

b.x = 1;

b.str = “hello, world!”;
char buffer[128];
b.serialize(buffer);

Bar* c = Bar::deserialize(buffer, &c);

delete c;

The Fix: Custom Serialize/Deserialize Methods

Code can be greatly simplified using buffer that automatically keeps
track of read/write position: i.e., behaves like a stream

void serialize(char* buffer) {
memcpy (buffer, &x, sizeof(x));
int len = strlen(str);
memcpy (buffer+sizeof(x), &len, sizeof(len));
memcpy (buffer+sizeof(x)+sizeof(len), str,
len*sizeof(char));

}

becomes
void serialize(Bytestream* buffer) {
buffer->write(&x, sizeof(x));
int len = strilen(str);
buffer->write(&len, sizeof(len));
buffer->write(str, len*sizeof(char));

}
part of homework will ask you to write such a Bytestream class

