ECS 165B: Database System Implementation
Lecture 3

UC Davis
April 4, 2011

Acknowledgements: some slides based on earlier ones by Raghu Ramakrishnan,
Johannes Gehrke, Jennifer Widom, Bertram Ludaescher, and Michael Gertz.

Class Agenda

* Last time:
— Serialization and memory management in C++

* Today:
— File and buffer management in DBMS
— File and buffer management in DavisDB
— Subversion (time allowing)

 Reading:
— Chapter 13

Announcements

Discussion section meets today, 1:10pm-2:00pm, 223 Olson

Armen will cover warmup homework solution and gdb mini-tutorial

Project teams: please sign up by end of day today via online Google doc

https://spreadsheets.google.com/ccc?
key=0Ag95XzE8poAldEJiYWhxanRkZHJIUINQbjdPUO9TLUE&h|=en&authkey=Cl-svcON

- We will finalize teams and set up your subversion repositories tomorrow morning

Project overview posted!

http://www.cs.ucdavis.edu/~green/courses/ecs165b/project.html

Project Part | will be finalized and sent out tomorrow, due Sunday 4/17 @
11:59pm

File and Buffer Management in a DBMS

File and Buffer Management in DavisDB

Disk Space Manager (given) Buffer Manager (given)

OS File System

Disks and Files

e (Traditional) DBMS stores information on hard disks

* This has major implications for DBMS design!

* READ: transfer data from disk to memory (RAM)
 WRITE: transfer data from RAM to disk

* Both are high-cost operations, relative to in-memory operations, so
must be planned carefully!

* DavisDB I/0O efficiency contest: minimize total READS and WRITES

Why Not Store Everything in Main Memory?

Traditional arguments:

[t costs too much. In 1995, S1000 would buy you either 128MB of
RAM or 7.5GB of disk.

* Main memory is volatile. We want data to be saved between runs.
(Obviously!)

Traditional storage hierarchy:
* Main memory (RAM) for currently-used data

* Disk for the main database (secondary storage)

* Tapes for archiving older versions of the data (tertiary storage)

DavisDB follows traditional model (minus the tapes ©)

Discussion: do the traditional arguments still hold water?

Disks and Paged Files

Secondary storage device of choice
Main advantage over tapes: random access versus sequential

Data on hard disks is stored and retrieved in units called disk blocks
or (as we'll term them in DavisDB) pages

Unlike RAM, time to retrieve a disk page varies depending upon
location on disk...

...therefore, relative placement of pages on disk has major impact
on DBMS performance!

* For simplicity, we'll overlook this in DavisDB

File is organized as a sequence of pages

Buffer Management
Main memory is limited
Pages of disk files move in/out of in-memory buffer pool
DavisDB # pages in buffer pool =40

Total buffer size (40 pages @4K pages) = 160K (tiny!)

Disk Space Management

Lowest layer of DBMS software manages space on disk

Higher levels call upon this layer to:
— allocate / de-allocate a page
— read / write a page

Request for a sequence of pages must be satisfied by
allocating the pages sequentially on disk! Higher levels don't
need to know how this is done, or how free space is managed

— Simplifying assumption in DavisDB: no requests for sequences; pages
are accessed one at a time

Buffer Management in a DBMS

Page Requests from Higher Levels

BUFFER POOL

/_/1

disk page

/_//1

free frame

MAIN MEMORY

<

————) choice of frame dictated
m by replacement policy
e

DISK

Data must be in RAM for DBMS to operate on it!

* Table of <frameNo, pageNo> pairs is maintained

When a Page is Requested...

If requested page is not in pool:
— Choose a frame for replacement
— If frame is dirty, write it to disk (“write on replacement”)

— Read requested page into chosen frame
Pin the page and return its address

If requests can be predicted (e.g., sequential scans), pages can
be pre-fetched several pages at a time

— Again, opportunity ignored in DavisDB for simplicity

More on Buffer Management

Requestor of page must unpin it, and indicate whether page
has been modified

— Dirty bit is used for this

Page in pool may be requested many times

— A pin count (aka reference count) is used. A page is a candidate for
replacement iff its pin count =0

Concurrency control and recovery may entail additional 1/0O
when a frame is chosen for replacement. (Write-Ahead Log
protocol; more later...)

— No concurrency control or recovery in DavisDB

Buffer Replacement Policy

Frame is chosen for replacement by a replacement policy:
— Least-recently-used (LRU), Clock, MRU, etc

— DavisDB uses LRU

Policy can have big impact on # of I/O's; depends on the
access pattern

Sequential flooding: nasty situation caused by LRU + repeated
page scans

— # buffer frames < # pages in file means each page request causes an
/0. MRU much better in this situation (but not in all situations, of

course).

DBMS vs. OS File System

OS does disk space and buffer management; why not let the
OS manage these tasks?

Differences in OS support: portability issues
Some technical limitations, e.g., files can't span disks

Buffer management in DBMS requires ability to:

— pin a page in buffer pool, force a page to disk (important for
implementing concurrency control and recovery)

— adjust replacement policy, and pre-fetch pages based on access
patterns in typical DB operations

Record Formats: Fixed-Length

F1 F2 F3 F4
«—L1—> L2 L3 L4
Base address (B) Address = B+L1+L2

Information about field types same for all records in a file;
stored in system catalogs

Finding i'th field requires scan of record

DavisDB uses fixed-length records

Record Formats: Variable-Length

 Two alternative formats (# fields is fixed):

F1 F2 F3 F4
4 $ $ $ $
Fiold f Fields Delimited by Special Symbols
Count
F1 F2 F3 F4
N U <A \
Array of Field Offsets

* Second offers direct access to i'th field, efficient storage of
nulls (special don't know value); small directory overhead

Slot 1
Slot 2

Slot N

-~ :

PACKED

o S

Space

number
of records

Slot 1
Slot 2

Page Formats: Fixed-Length Records

Slot N
Slot M
1/...]0/1 1M<\
M.. 321 number
UNPACKED, BITMAP of slots

* Record id = <page id, slot #>. In first alternative, moving
records for free space management changes record id; may

not be acceptable.

Page Formats: Variable-Length Records

Rid = illNi

C

Rid = i1|2i

Page i

Rid = illli
Jal

\ 20 16 24 N
N 2 L # slots
SLOT DIRECTORY

Pointer
to start
of free
space

 Can move records on page without changing record id; so,
attractive for fixed-length records too!

Files of Records

Page or block is OK when doing I/0O, but higher levels of DBMS
operate on records, and files of records.

FILE: a collection of pages, each containing a collection of
records. Must support:

— insert/delete/modify record
— read a particular record (specified using record id)

— scan all records (possibly with some conditions on the records to be
retrieved)

Unordered (Heap) Files

Simplest file structure contains records in no particular order

As file grows and shrinks, disk pages are allocated and de-
allocated

To support record-level operations, we must:
— keep track of the pages in a file
— keep track of free space on pages

— keep track of the records on a page

There are many alternatives for keeping track of this

Heap File Implemented as a List

N N N Yy
Data Data Data F1_111 Pages
/) Page Page Page
I R N N
NN N Ty
\ Data Data Data

Pages with
» Page Page Page Free Space
A A A

* The header page id and heap file name must be stored
someplace

Each page contains two "pointers" (page ids) plus data

