ECS 165B: Database System Implementation
Lecture 4

UC Davis
April 6, 2011

Acknowledgements: some slides based on earlier ones by Raghu Ramakrishnan,
Johannes Gehrke, Jennifer Widom, Bertram Ludaescher, and Michael Gertz.

Class Agenda

* Last time:
— File and buffer management in DBMS
— File and buffer management in DavisDB

* Today:
— File and buffer management in DBMS/DavisDB, cont
— Subversion and project logistics
— DavisDB API, Project Part 1

* Reading:
— Chapter 13

Announcements

Project Part 1 posted, due Sunday 4/17 @ 11:59pm

http://www.cs.ucdavis.edu/~green/courses/ecs165b/
recordManager.html

Repositories will be set up later this morning

File and Buffer Management, cont’d

Heap File Implemented as a List

N N N Yy
Data Data Data F1_111 Pages
/) Page Page Page
I R N N
NN N Ty
\ Data Data Data

Pages with
» Page Page Page Free Space
A A A

* The header page id and heap file name must be stored
someplace

Each page contains two "pointers" (page ids) plus data

Heap File Using a Page Directory

| Data
Header Page 1

Page

Data
Page 2

Data
DIRECTORY Page N

The entry for a page can include the number of free bytes on
the page

The directory is a collection of pages; linked list
implementation is just one alternative

— Much smaller than linked list of all heap file pages!

System Catalogs (will revisit in DavisDB, Part 3)

For each index:
— structure (e.g., B+-tree) and search key fields
For each relation

— name, file name, file structure (e.g., heap file)
— attribute name and type, for each attribute
— index name, for each index

— integrity constraints

For each view:

— view name and definition

Plus statistics, authorization, buffer pool size, etc

— Catalogs are themselves stored as relations!

Example: System Catalog Table for Attributes

attr name
attr name
rel name
type
position
sid

name
login

age

gpa

fid

fname

sal

rel name
Attribute_Cat
Attribute_Cat
Attribute_Cat
Attribute_Cat
Students
Students
Students
Students
Students
Faculty
Faculty
Faculty

type
string
string
string
integer
string
string
string
integer
real
string
string
real

position
1

W, Ok WP, B WD

Summary

Disks provide cheap, non-volatile, but slow storage

— Random access, but cost depends on location of page on disk;
important to arrange data sequentially to minimize seek delays

e DavisDB isn't very smart about this

Buffer manager brings pages into RAM
— Page stays in RAM until released by requestor

— Written to disk when frame chosen for replacement (which is some
time after requestor releases the page)

— Choice of frame to replace based on replacement policy
— Tries to pre-fetch several pages at a time

* DavisDB doesn't worry about this

Summary (Continued)

File layer keeps track of pages in a file, and supports
abstraction of a collection of records.

— Pages with free space identified using linked list or directory structure
(similar to how pages in file are kept track of)

Indexes support efficient retrieval of records based on the
values in some fields

Catalog relations store information about relations, indices,
and views. (Information that is common to all records in a
given collection.)

File and Buffer Management in DavisDB

File and Buffer Management in DavisDB

Page File Manager (given) Buffer Manager (given)

OS File System

Paged File Component (Provided)

Paged File Component has two functions:
— provides in-memory buffer pool of pages/frames

— performs low-level file I/O at the granularity of pages

Overview on class web site:

http://www.cs.ucdavis.edu/~green/courses/ecs165b/pageFile.html

See also Doxygen docs:

http://www.cs.ucdavis.edu/~green/courses/ecs165b/docs/index.html

Where it all begins: PageFileManager...

PageFileManager

* Your code will use one singleton instance of this class

 Manages the buffer pool of in-memory pages
— allocate/de-allocate "scratch" pages
— coordinates with file handle objects to bring pages to/from disk
— uses LRU replacement policy

* Used to create/open/close/remove page files

— Returns PageFileHandle object to manage pages within a file

PageFileHandle

 Returned by PageFileManager, used to:
— allocate/de-allocate pages in the file
— pages identified by logical page number rather than physical offset
— mark page as dirty
— force page to disk

— scan pages in file

Coding Tip: Don't Forget to Free Memory!

DBMS is a long-running process; memory leaks are
unacceptable

Every new must have a matching delete

With some coding discipline, can avoid many problems

— When possible, put new and delete close together in the code, so that
a human can easily verify correctness

— Memory must always be freed, even when handling exceptional
conditions

Use tools like valgrind to track down memory leaks

We will check for memory leaks when grading your projects

Memory Management for Shared Objects

When several parts of the code are using same object, how do we
know when object is “no longer being used”?

— so that it can be freed (C++ object), or evicted from buffer pool (page),
or ...

Standard solution in C/C++: use reference counting

— When code needs an object, increment the reference count
— When finished, decrement the reference count
— Pitfalls?

For example, Microsoft COM/OLE objects have methods addRef
and release to do this

In DBMS buffer pool, traditional names for the methods are pin and
unpin

Coding Tip: Pinning/Unpinning Pages

 Whenever you access a page, you must remember to unpin it after
you're done (else you leak the page)

* Best coding practice: do both tasks nearby, ideally in the same
function, so that correctness can easily be verified

PageFileHandle* file;
PageHandle page;

ReturnCode code = file->getFirstPage(&page);
if (code == RC_OK) {
// .. do stuff with page ..
file->unpinPage(page.pageNo);

e Same goes for memory allocation/de-allocation

— make it easy to match every new with its corresponding delete

Coding Tip: Don't Forget to Mark Pages Dirty!

* Be diligent about getting this right from the beginning, else
you risk introducing tough-to-track-down bugs

FileHandle* file;
PageHandle page;

ReturnCode code = file->getFirstPage(&page);
if (code == RC_OK) {
// .. modify contents of page ..
file->markDirty(page.pageNo);
file->unpinPage(page.pageNo) ;

Coding Tip: Assertions in Page File Manager

* Page file manager makes heavy use of runtime assertions;
some of these will catch your bugs!

ReturnCode PageFileManager::allocateBlock
(PageFileHandle* fileHandle, int pageNo, char** data) {
// first, look for a free block, while also computing
// the LRU unpinned block to use as backup
int iLru = -1;
long epochLru = LONG MAX;
for (uint i = 0; i < PF _BUFFER SIZE; i++) {
assert(pageBlocks [1].isConsistent());

if this assertion fires, it means
} somebody wrote past the end of
a page block!

Coding Tip: Assertions in Page File Manager

assert(pageBlocks [i1].isConsistent());

page block of size
PF_PAGE_SIZE =

4096 bytes

isConsistent() checks for
modification of the guard bytes
guard bytes following the page block

Revision Control Systems and Subversion

Why use revision control systems?

* Scenario 1:
— Your program is working
— You change "just one thing"
— Your program breaks
— You change it back

— Your program is still broken — why?

* Has this ever happened to you?

Why use revision control systems (2)?

Your program worked well enough yesterday

You made a lot of improvements last night...

— but you haven't gotten them to work yet

You need to turn in your program now

Has this ever happened to you?

25

Revision control for teams

Scenario:
— You change one part of a program -- it works
— Your co-worker changes another part -- it works
— You put them together -- it doesn’t work

— Some change in one part must have broken something in the other
part

— What were all the changes?

Revision Control for Teams (2)

* Scenario:
— You make a number of improvements to a class

— Your co-worker makes a number of different improvements to the same
class

* How can you merge these changes?

26

27

Revision control systems

A revision control system (aka version control system) does these
things:

— Keeps multiple (older and newer) versions of source code, headers, etc
— Requests comments regarding every change
— Displays differences between versions

— Detect/resolve conflicts

Many systems out there: sccs, rcs, cvs, Visual SourceSafe, svn, git, ...
— Most popular in the past: cvs

— Most popular nowadays: svn (also git)

28

Subversion commands

svn checkout (aka svn co) - check out code from repository
svn add - add a new file/directory to the repository

svn delete - delete a file/directory from the repository

svn commit - commit local changes to repository

svn diff - view differences wrt current or old version

svn status - see pending changes

svn info - get info about repository

svn update - grab new revisions from repository

svn help - list all commands

See http://subversion.tigris.org

Graphical front-ends: TortoiseSVN (Windows), RapidSVN (cross-
platform), Subclipse (eclipse plug-in)

— Visual diffs, easier browsing of history, ...

Logistics: Repository Access

Follow directions on
http://www.cs.ucdavis.edu/~green/courses/ecs165b/project.html

[green@pcl2 ~]$ svn co file:///home/csl65b/CSIF-Proj/
csl65b-0/svn/trunk/DavisDB

A DavisDB/RecordFileHandle.h

A DavisDB/PageFileHandle.h

A DavisDB/PageFileManager.cpp
A DavisDB/RecordFileManager.cpp

A DavisDB/submit.sh

A DavisDB/CMakeLists.txt
A DavisDB/writeup.txt

A DavisDB/Common.h
[green@pcl2 ~]$

Logistics: Repository Access

* Must tell repository about new files!

[green@pcl2 ~/DavisDB]$ svn add Foo.cpp Foo.h

A Foo.cpp

A Foo.h

[green@pcl2 ~/DavisDB]$ svn commit -m ""
Adding Foo.cpp

Adding Foo.h

Transmitting file data ..
Committed revision 84.

 To get changes from your teammate:

[chenmi@pcl0 ~/DavisDB]$ svn update

Logistics: Submitting Your Homework

[green@pcl12 DavisDB]S ./submit.sh
Usage: submit.sh <hw#>
where <hw#> is a number in the range [1,5]

Submits your project component by tagging the current version

of your subversion repository as the submitted version. It may

be executed multiple times for the same <hw#>. The most recently
submitted version is the one that will be used for grading (and

its timestamp will determine any late penalties). This script

must be run from your subversion DavisDB directory.

After submitting, the script will also run a test build of your project,
by checking out the submitted version into a temporary directory and
executing "cmake ." then "make".

Logistics: Submitting Your Homework (2)

[green@pcl2 DavisDB]$./submit.sh 1
Submitting HW1...

Submission successful.

Running a test build on the submitted code...

Test build successful.

Makefiles in DavisDB

* We won’t use makefiles directly, rather, we use cmake
makefile generator, driven by CMakelLists.txt

green@quatchi:~/ecs165b-s11/project/public/DavisDBS cmake .
-- The C compiler identification is GNU
-- The CXX compiler identification is GNU

-- Build files have been written to: /Users/green/ecs165b-s11/project/public/DavisDB
 Can now type make

e Cool benefit: can also generate Xcode projects (cmake —g
Xcode), eclipse projects, ... from one spec, CMakelLists.txt

