
ECS 165B: Database System Implementation
Lecture 5

UC Davis
April 8, 2011



Agenda

I Last time – file and buffer management; subversion and
DavisDB logistics

I Today (something completely different) –

A taste of database theory, Part 1
relational algebra, relational calculus, and first-order logic



Announcements

Reminder: project Part 1 due in 9 days

Don’t forget about writeup.txt (in particular, estimate time
before you start coding)



Introduction to Database Theory, I: SQL, relational
algebra, and relational calculus



SQL, relational algebra, and relational calculus

I In ECS165A, you already saw two different database query
languages, SQL and relational algebra (RA):

select R.A, S.C

from R, S

where R.B = S.B

versus πA,C (R on S)

I Today we’ll look at a third query language, relational calculus:

{(x , z) | ∃y R(x , y) ∧ S(y , z)}

Note, refers to attributes by position rather than by name;
“unnamed” relational algebra does this too:

π1,4(σ2=3(R × S))



Why talk about relational calculus (RC)?

I To show that SQL is not just some ad-hoc language that
people cooked up in the 70s; rather, it is just first-order logic
(FO) in disguise! Main result we’ll see today:

SQL = RA = RC = FO

“Logic is the calculus of computer science” – Manna and Waldinger 1985

I Known results about first-order logic can be transferred to
SQL

I Convenient formalism when considering query containment
and query equivalence (we’ll see these in another lecture)



Review: relational algebra (RA)

We’ll use the “unnamed” version of the relational algebra:

I predicate. R

I selection. σi=j(E ) or σi=c(E )

I projection. πi1,...,ik (E )

I cartesian product. E1 × E2

I union. E1 ∪ E2

I difference. E1 − E2.

A “join” in the unnamed relational algebra is expressed using
selection, projection, and cartesian product. No need for renaming
(no names!), or intersection E1 ∩ E2 (why?).



Introducing the relational calculus (RC)

I Database query language based on first-order logic

I Syntax: expressions of the form

{(x1, . . . , xn) | ϕ(x1, . . . , xn)}

where ϕ(x1, . . . , xn) is a first order formula with free variables
x1, . . . , xn.

I Semantics: return all tuples (a1, . . . , an) such that
ϕ(a1, . . . , an) is true in the database.



What is a first-order formula?

I An expression built up using

I variables. x , y , z , . . .
I constants. “Joe”, 42, . . .
I predicate symbols. names of database relations
I logical connectives. ∧,∨,¬,→
I equality =
I quantifiers ∀,∃

I Examples of first-order formulae:
I ∀x∀y∀z R(x , y) ∧ R(y , z)→ R(x , z)
I ∀x R(x , x)
I ∀x∀y R(x , y)→ R(y , x)

Q: what do three formulae above together say of R?
I S(x , x) ∨ ∃y R(x , y) (x is a free variable)



Example: relational calculus queries

Database with three relations: Class(classId, className, roomNo);
Student(studentId, studentName); and Takes(studentId, classId).

I “Find all students taking a class meeting in Wellman 1”

{(x) | ∃s∃c∃n Student(s, x) ∧ Takes(s, c)
∧Class(c , n, ”Wellman 1”)}

I “Find all pairs of students not taking a class together”

{(x , y) | ∃s∃s ′ Student(s, x) ∧ Student(s ′, y)∧
¬∃c(Takes(s, c) ∧ Takes(s ′, c))}



Example: relational calculus queries (2)

Database with three relations: Sailor(sid, name, rating, age);
Boats(bid, color); and Reserves(sid, bid, day).

I “Find all sailors with a rating above 7”

I “Find sailors rated above 7 who’ve reserved a red boat”

I “Find sailors who’ve reserved all boats”



Ruling out “bad” relational calculus queries

I It is possible to write relational calculus queries that return
(a) infinitely many answers, or (b) answers that are finite but
depend on things “outside” the database

I case (a): {(x , n) | ¬Student(x , n)}
I case (b), subtle!: {(n) | ∀x Student(x , n)}

I These “bad” queries are called domain-dependent queries:
their answers depend on the underlying domain of the
database, rather than what is actually in the database (its
“active domain”)

I Syntactic restriction to “safe” relational calculus queries
ensures domain-independence



Domain versus active domain

I For any database, the tuples in the database are over some
underlying domain of values (e.g., integers, strings, . . . ).

I The active domain of the database is the set of all values
that are actually found in the database.

I E.g., if the database has a single relation R with three tuples
(1, 2), (2, 3), (2, 4), then the active domain is {1, 2, 3, 4}. The
domain might be, e.g., all the natural numbers.

I The user may know what the active domain is, but not the
domain. (e.g., 32-bit integers versus 64-bit integers versus
. . . )

I Can compute the active domain with a database query! e.g.,
π1(R) ∪ π2(R).



FO as a query language

If ϕ(x1, . . . , xn) is a first-order formula with free variables
x1, . . . , xn then we can think of ϕ itself as a query, shorthand for
the relational calculus query

{(x1, . . . , xn) | ϕ(x1, . . . , xn)}

In this sense, the relational calculus and first-order logic are really
the same query language.



RA ⊆ domain-independent FO

Theorem

Every relational algebra query can be rewritten as an equivalent
domain-independent FO query.

Proof.

(Sketch.) If E1 ≡ {(x1, . . . , xn) | ϕ(x1, . . . , xn)} and
E2 ≡ {(y1, . . . , ym) | ψ(y1, . . . , ym)}, then, e.g.,

I π1,3,2(E1) ≡ {(x1, x3, x2) | ∃x4 · · · ∃xn ϕ(x1, . . . , xn)}

I σ2=3(E1) ≡ {(x1, . . . , xn) | ϕ(x1, . . . , xn) ∧ x2 = x3}

I E1 × E2 ≡
{(x1, . . . , xn, y1, . . . , ym) | ϕ(x1, . . . , xn) ∧ ψ(y1, . . . , ym)}



Domain-independent FO ⊆ RA

Theorem

Every domain-independent FO query can be rewritten as an
equivalent relational algebra query.

Proof.

Omitted (but surprisingly straightforward!)



Equivalence of relational algebra queries

Fundamental problem relevant to query optimization: given
relational algebra queries Q,Q ′, are Q and Q ′ equivalent? That
is, do their answers agree on all databases?

Theorem

Equivalence of relational algebra queries is undecidable.

Proof.

Follows from a well-known result in mathematical logic,
Trakhtenbrot’s Theorem, which says that validity of first-order
sentence on “finite structures” (i.e., databases) is undecidable. A
first-order sentence - a formula with no free variables - ϕ is valid if
it’s true for any database.



Summary

I Take-home message: SQL is just first-order logic in disguise

I Although, we ignored features of “real” SQL like aggregation,
user-defined functions, . . .

I Next time: some beautiful results about fragments of SQL
where equivalence is decidable.


