ECS 165B: Database System Implementation
Lecture 8

UC Davis
April 14, 2011

Acknowledgements: portions based on slides by Raghu Ramakrishnan and
Johannes Gehrke.

Class Agenda

e Last time:

— Intro to database theory, cont’d: containment, equivalence, and
minimization of conjunctive queries

* Today:

— Overview of indexing

* Reading
— Chapter 14

Announcements

Project Part 1 due Sunday @ 11:59pm

- submit.sh early, submit.sh often

Office hours today (055 Kemper): TJ 10am-12pm, Armen 1pm-3pm

Have you done an svn commit lately?
group9:garysu,yexeric
groupl0:trdelgad,tadileo
groupl13:kssassen

groupl4:mtgarip,youchen

Overview of Indexing

Indexes

* Anindex on a file speeds up selections on the search key
fields for the index.

— Any subset of the fields of a relation can be the search key for an
index on the relation.

— Search key is not the same as key (minimal set of fields that
uniquely identify a record in a relation).

* Anindex contains a collection of data entries, and supports

efficient retrieval of all data entries k* with a given key
value k.

Alternatives for Data Entry k* in Index

* Three alternatives:
— Data record with key value k
— <k, rid of data record with search key value k>
— <k, list of rids of data records with search key k>

* Choice of alternative for data entries is orthogonal to the
indexing technique used to locate data entries with a given
key value k.

— Examples of indexing techniques: B+ trees, hash-based structures

— Typically, index contains auxiliary information that directs searches
to the desired data entries

Alternatives for Data Entries (Contd.)

e Alternative 1:

— If this is used, index structure is a file organization for data records
(instead of an unordered heap file or sorted file).

— At most one index on a given collection of data records can use
Alternative 1. (Otherwise, data records are duplicated, leading to
redundant storage and potential inconsistency.)

— |If data records are very large, # of pages containing data entries is
high. Implies size of auxiliary information in the index is also large,

typically.

Alternatives for Data Entries (Contd.)

e Alternatives 2 and 3:

— Data entries typically much smaller than data records. So, better
than Alternative 1 with large data records, especially if search keys
are small. (Portion of index structure used to direct search, which
depends on size of data entries, is much smaller than with

Alternative 1.)

— Alternative 3 more compact than Alternative 2, but leads to variable
sized data entries even if search keys are of fixed length.

Index Classification

* Primary vs. secondary: If search key contains primary key,
then called primary index.

— Unique index: Search key contains a candidate key.

° (Clustered vs. unclustered: If order of data records is the same
as, or close to’, order of data entries, then called clustered
index.

— Alternative 1 implies clustered; in practice, clustered also implies
Alternative 1 (since sorted files are rare).

— Afile can be clustered on at most one search key.

— Cost of retrieving data records through index varies greatly based on
whether index is clustered or not!

Clustered vs. Unclustered Index

e Suppose that Alternative (2) is used for data entries, and that the
data records are stored in a Heap file.

— To build clustered index, first sort the Heap file (with some free space on
each page for future inserts).

— Overflow pages may be needed for inserts. (Thus, order of data recs is ‘close
to’, but not identical to, the sort order.)

Index entries
CLUSTERED direct search for UNCLUSTERED
data entries
Data entries | | Data entries < <
/A 1\ DN (Index File) X< R~ X

7R\ NN atatie) /N) Nl T I

Data Records Data Records

Hash-Based Indexes

Good for equality selections.

* Index is a collection of buckets. Bucket = primary
page plus zero or more overflow pages.

* Hashing function h: h(r) = bucket in which record r
belongs. h looks at the search key fields of r.

If Alternative (1) is used, the buckets contain the data
records; otherwise, they contain <key, rid> or <key, rid-list>

pairs.

B+ Tree Indexes

Non-leaf ‘l
Pages \17 oo ‘17
- T A A A
Leaf © o o > © o o > © o o > o o o
Pages
% Leaf pages contain data entries, and are chained (prev & next)
< Non-leaf pages contain index entries and direct searches:
index entry
| |

} } }

Example B+ Tree

Roo&

17

Entries< 17 Q

e

K

Entries >= 1@

27

30

y

T

2*

3*

ﬁ\;*

13
7*

8*

x
14*(16*

221

24

27*

29*

33*

34*

38*

39*

Find 28*? 29*? All > 15* and < 30*

Insert/delete: Find data entry in leaf, then change it. Need
to adjust parent sometimes.
— And change sometimes bubbles up the tree

Cost Model for Our Analysis

We ignore CPU costs, for simplicity:

B: The number of data pages
R: Number of records per page
D: (Average) time to read or write disk page

Measuring number of page |/O’s ignores gains of pre-fetching a
sequence of pages; thus, even 1/O cost is only approximated.

Average-case analysis; based on several simplistic assumptions.

w Good enough to show the overall trends!

Comparing File Organizations

Heap files (random order; insert at eof)
Sorted files, sorted on <age, sal>
Clustered B+ tree file, Alternative (1), search key <age, sal>

Heap file with unclustered B + tree index on search key
<age, sal>

Heap file with unclustered hash index on search key <age,
sal>

Operations to Compare

Scan: Fetch all records from disk
Equality search

Range selection

Insert a record

Delete a record

Assumptions in Our Analysis

 Heap Files:
— Equality selection on key; exactly one match.
e Sorted Files:

— Files compacted after deletions.

* Indexes:
— Alt (2), (3): data entry size = 10% size of record
— Hash: No overflow buckets.
- 80% page occupancy => File size = 1.25 data size
— Tree: 67% occupancy (this is typical).
- Implies file size = 1.5 data size

Cost of Operations

(a) Scan (b) (c) Range (d) Insert | (e) Delete
Equality

1) Heap

(
2

)
) Sorted
(3) Clustered

(4) Unclustered
Tree index

(5) Unclustered
Hash index

w Several assumptions underlie these (rough) estimates!

Cost of Operations
(a) Scan (b) Equality |(c) Range (d) Insert (e) Delete
(1) Heap BD 0.5BD BD 2D Search
+D
(2) Sorted BD Dlog 2B Dlog2B + |Search Search
matches |+ BD +BD
(3) Clustered |1.5BD Dlog ¥ 1.5B [Dlog ¥ 1.5B |Search Search
+ # matches |+ D +D
(4) Unclustered |BD(R+0.15) |D(1 + Dlog r 0.15B |D(3 + Search
Tree index log 7 0.15B) |+ # matches |log 7 0.15B) [+ 2D
(5) Unclustered |BD(R+0.1 |2D BD 4D Search
Hash index 25) + 2D

w Several assumptions underlie these (rough) estimates!

Understanding the Workload

* For each query in the workload:
— Which relations does it access?
— Which attributes are retrieved?
— Which attributes are involved in selection/join conditions? How selective are
these conditions likely to be?
* For each update in the workload:

— Which attributes are involved in selection/join conditions? How selective are
these conditions likely to be?

— The type of update (INSERT/DELETE/UPDATE), and the attributes that are
affected.

Choice of Indexes

e What indexes should we create?

— Which relations should have indexes? What field(s) should be the
search key? Should we build several indexes?

 For each index, what kind of an index should it be?
— Clustered? Hash/tree?

Choice of Indexes (Contd.)

* One approach: Consider the most important queries in turn.
Consider the best plan using the current indexes, and see if a
better plan is possible with an additional index. If so, create it.

— Obviously, this implies that we must understand how a DBMS evaluates
gueries and creates query evaluation plans!

— For now, we discuss simple 1-table queries.

e Before creating an index, must also consider the impact on
updates in the workload!

— Trade-off: Indexes can make queries go faster, updates slower. Require
disk space, too.

Index Selection Guidelines

e Attributes in WHERE clause are candidates for index keys.
— Exact match condition suggests hash index.

— Range query suggests tree index.

* Clustering is especially useful for range queries; can also help on equality
gueries if there are many duplicates.

 Multi-attribute search keys should be considered when a WHERE
clause contains several conditions.
— Order of attributes is important for range queries.

— Such indexes can sometimes enable index-only strategies for important
gueries.

* For index-only strategies, clustering is not important!

 Tryto choose indexes that benefit as many queries as possible.
Since only one index can be clustered per relation, choose it
based on important queries that would benefit the most from
clustering.

Examples of Clustered Indexes

B+ tree index on E.age can be used to ISJ]IEQIED]EBET E.dno
s Emp E
get qualifying tuples. WHERE E.age>40
— How selective is the condition?

— Is the index clustered?

Consider the GROUP BY query. SELECT E.dno, COUNT (*)

_ If many tuples have E.age > 10, using E.age | FROM Emp E

index and sorting the retrieved tuples may | WHERE E.age>10
be costly. GROUP BY E.dno

— Clustered E.dno index may be better!

Equality queries and duplicates:

— Clustering on E.hobby helps! SELECT E.dno

FROM Emp E
WHERE E.hobby=Stamps

Indexes with Composite Search Keys

* Composite Search Keys: Search on Examples of composite key
a combination of fields. indexes using lexicographic order.
— Equality guery: Every field value is
equal to a constant value. E.g. wrt 11.80 / 1
<sal,age> index: 19 40 Y,
* age=20and sal =75 12:20 N name age sal 19
— Range query: Some field value is not 13.75 \ bob 12 10 13
a constant. E.g.: <age, sal> cal 11 80 <age>
e age =20; or age=20 and sal > 10 joe 12 20
* Data entries in index sorted by 10.12 sue 13 75 10
sea rqh key to support range 20127 Data records > 5
queries. 7513) sorted by name > 75
— Lexicographic order, or 80.11 \ 80
— Spatial order. <sal, age> <sal>
Data entries in index Data entries

sorted by <sal,age> sorted by <sal>

Composite Search Keys

To retrieve Emp records with age=30 AND sa/=4000, an index on
<age,sal> would be better than an index on age or an index on sal.
— Choice of index key orthogonal to clustering etc.

If condition is: 20<age<30 AND 3000<sal<5000:

— Clustered tree index on <age,sal> or <sal,age> is best.

If condition is: age=30 AND 3000<sa/<5000:

— Clustered <age,sal> index much better than <sal,age> index!

Composite indexes are larger, updated more often.

SELECT D.mgr

Index-Only Plans FROM Dept D, Emp E
<E.dno> | WHERE D.dno=E.dno

* A number of queries <E.dno,E.eid>
can be answered Tree index!

without retrieving

any tuples from one

or more of the <E.dno>
relations involved if

a suitable index is

available <E.dno,E.sal>

Tree index!

SELECT D.mgr, E.eid
FROM Dept D, Emp E
WHERE D.dno=E.dno

SELECT E.dno, COUNT(*)
FROM Emp E
GROUP BY E.dno

SELECT E.dno, MIN(E.sal)
FROM Emp E
GROUP BY E.dno

<E.ageEsal> | GET ECT AVG(E.sal)

or
<E.sal, E.age>

FROM Emp E
WHERE E.age=25 AND

Tree! E.sal BETWEEN 3000 AND 5000

Index-Only Plans (Contd.)

Index-only plans are
possible if the key is
<dno,age> or we have
a tree index with key
<age,dno>

— Which is better?

— What if we consider
the second query?

SELECT E.dno, COUNT (¥)
FROM Emp E

WHERE E.age=30

GROUP BY E.dno

SELECT E.dno, COUNT (¥)
FROM Emp E

WHERE E.age>30

GROUP BY E.dno

Summary (Contd.)

Index is a collection of data entries plus a way to quickly
find entries with given key values.Data entries can be
actual data records, <key, rid> pairs, or <key, rid-list>
pairs.

— Choice orthogonal to indexing technique used to locate data
entries with a given key value.

Can have several indexes on a given file of data records,
each with a different search key.

Indexes can be classified as clustered vs. unclustered,
primary vs. secondary, and dense vs. sparse. Differences
have important consequences for utility/performance.

Summary (Contd.)

* Understanding the nature of the workload for the application,
and the performance goals, is essential to developing a good
design.

— What are the important queries and updates? What attributes/relations
are involved?

* Indexes must be chosen to speed up important queries (and
perhaps some updates!).
— Index maintenance overhead on updates to key fields.
— Choose indexes that can help many queries, if possible.
— Build indexes to support index-only strategies.

— Clustering is an important decision; only one index on a given relation
can be clustered!

— Order of fields in composite index key can be important.

