
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Relational Query Optimization

Chapter 15

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Highlights of System R Optimizer

v  Impact:
§  Most widely used currently; works well for < 10 joins.

v  Cost estimation: Approximate art at best.
§  Statistics, maintained in system catalogs, used to estimate

cost of operations and result sizes.
§  Considers combination of CPU and I/O costs.

v  Plan Space: Too large, must be pruned.
§  Only the space of left-deep plans is considered.

• Left-deep plans allow output of each operator to be pipelined into
the next operator without storing it in a temporary relation.

§  Cartesian products avoided.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Overview of Query Optimization

v  Plan: Tree of R.A. ops, with choice of alg for each op.
§  Each operator typically implemented using a `pull’

interface: when an operator is `pulled’ for the next output
tuples, it `pulls’ on its inputs and computes them.

v  Two main issues:
§  For a given query, what plans are considered?

• Algorithm to search plan space for cheapest (estimated) plan.

§  How is the cost of a plan estimated?

v  Ideally: Want to find best plan. Practically: Avoid
worst plans!

v  We will study the System R approach.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Schema for Examples

v  Similar to old schema; rname added for variations.
v  Reserves:

§  Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.

v  Sailors:
§  Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Query Blocks: Units of Optimization

v  An SQL query is parsed into a
collection of query blocks, and these
are optimized one block at a time.

v  Nested blocks are usually treated as
calls to a subroutine, made once per
outer tuple. (This is an over-
simplification, but serves for now.)

SELECT S.sname
FROM Sailors S
WHERE S.age IN
 (SELECT MAX (S2.age)
 FROM Sailors S2
 GROUP BY S2.rating)

Nested block Outer block
v  For each block, the plans considered are:

–  All available access methods, for each reln in FROM clause.
–  All left-deep join trees (i.e., all ways to join the relations one-
at-a-time, with the inner reln in the FROM clause, considering
all reln permutations and join methods.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Relational Algebra Equivalences

v  Allow us to choose different join orders and to
`push’ selections and projections ahead of joins.

v  Selections: (Cascade)

() ()()σ σ σc cn c cnR R1 1∧ ∧ ≡... . . .

()() ()()σ σ σ σc c c cR R1 2 2 1≡ (Commute)

v  Projections: () ()()()π π πa a anR R1 1≡ . . . (Cascade)

v  Joins: R (S T) (R S) T ≡ (Associative)

(R S) (S R) ≡ (Commute)

R (S T) (T R) S   Show that: ≡

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

More Equivalences

v  A projection commutes with a selection that only
uses attributes retained by the projection.

v  Selection between attributes of the two arguments of
a cross-product converts cross-product to a join.

v  A selection on just attributes of R commutes with
R S. (i.e., (R S) (R) S)

v  Similarly, if a projection follows a join R S, we can
`push’ it by retaining only attributes of R (and S) that
are needed for the join or are kept by the projection.

 σ σ≡

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Enumeration of Alternative Plans

v  There are two main cases:
§  Single-relation plans
§  Multiple-relation plans

v  For queries over a single relation, queries consist of a
combination of selects, projects, and aggregate ops:
§  Each available access path (file scan / index) is considered,

and the one with the least estimated cost is chosen.
§  The different operations are essentially carried out

together (e.g., if an index is used for a selection, projection
is done for each retrieved tuple, and the resulting tuples
are pipelined into the aggregate computation).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Cost Estimation

v  For each plan considered, must estimate cost:
§  Must estimate cost of each operation in plan tree.

• Depends on input cardinalities.
• We’ve already discussed how to estimate the cost of

operations (sequential scan, index scan, joins, etc.)

§  Must also estimate size of result for each operation
in tree!

• Use information about the input relations.
• For selections and joins, assume independence of

predicates.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Cost Estimates for Single-Relation Plans

v  Index I on primary key matches selection:
§  Cost is Height(I)+1 for a B+ tree, about 1.2 for hash index.

v  Clustered index I matching one or more selects:
§  (NPages(I)+NPages(R)) * product of RF’s of matching selects.

v  Non-clustered index I matching one or more selects:
§  (NPages(I)+NTuples(R)) * product of RF’s of matching selects.

v  Sequential scan of file:
§  NPages(R).

 Note: Typically, no duplicate elimination on projections!
(Exception: Done on answers if user says DISTINCT.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Example

v  If we have an index on rating:
§  (1/NKeys(I)) * NTuples(R) = (1/10) * 40000 tuples retrieved.
§  Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R)) =

(1/10) * (50+500) pages are retrieved. (This is the cost.)
§  Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R))

= (1/10) * (50+40000) pages are retrieved.

v  If we have an index on sid:
§  Would have to retrieve all tuples/pages. With a clustered

index, the cost is 50+500, with unclustered index, 50+40000.

v  Doing a file scan:
§  We retrieve all file pages (500).

SELECT S.sid
FROM Sailors S
WHERE S.rating=8

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Queries Over Multiple Relations
v  Fundamental decision in System R: only left-deep join

trees are considered.
§  As the number of joins increases, the number of alternative

plans grows rapidly; we need to restrict the search space.
§  Left-deep trees allow us to generate all fully pipelined plans.

• Intermediate results not written to temporary files.
• Not all left-deep trees are fully pipelined (e.g., SM join).

B A

C

D

B A

C

D

C D B A

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Enumeration of Left-Deep Plans
v  Left-deep plans differ only in the order of relations,

the access method for each relation, and the join
method for each join.

v  Enumerated using N passes (if N relations joined):
§  Pass 1: Find best 1-relation plan for each relation.
§  Pass 2: Find best way to join result of each 1-relation plan

(as outer) to another relation. (All 2-relation plans.)
§  Pass N: Find best way to join result of a (N-1)-relation plan

(as outer) to the N’th relation. (All N-relation plans.)

v  For each subset of relations, retain only:
§  Cheapest plan overall, plus
§  Cheapest plan for each interesting order of the tuples.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Enumeration of Plans (Contd.)

v  ORDER BY, GROUP BY, aggregates etc. handled as a
final step, using either an `interestingly ordered’
plan or an addional sorting operator.

v  An N-1 way plan is not combined with an
additional relation unless there is a join condition
between them, unless all predicates in WHERE have
been used up.
§  i.e., avoid Cartesian products if possible.

v  In spite of pruning plan space, this approach is still
exponential in the # of tables.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Cost Estimation for Multirelation Plans

v  Consider a query block:
v  Maximum # tuples in result is the product of the

cardinalities of relations in the FROM clause.
v  Reduction factor (RF) associated with each term reflects

the impact of the term in reducing result size. Result
cardinality = Max # tuples * product of all RF’s.

v  Multirelation plans are built up by joining one new
relation at a time.
§  Cost of join method, plus estimation of join cardinality

gives us both cost estimate and result size estimate

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Example
v  Pass1:

§  Sailors: B+ tree matches rating>5,
and is probably cheapest. However,
if this selection is expected to
retrieve a lot of tuples, and index is
unclustered, file scan may be cheaper.

• Still, B+ tree plan kept (because tuples are in rating order).

§  Reserves: B+ tree on bid matches bid=500; cheapest.

Sailors:
 B+ tree on rating
 Hash on sid
Reserves:
 B+ tree on bid

  Pass 2:
–  We consider each plan retained from Pass 1 as the outer,
and consider how to join it with the (only) other relation.

  e.g., Reserves as outer: Hash index can be used to get Sailors tuples
 that satisfy sid = outer tuple’s sid value.

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Nested Queries

v  Nested block is optimized
independently, with the outer
tuple considered as providing a
selection condition.

v  Outer block is optimized with
the cost of `calling’ nested block
computation taken into account.

v  Implicit ordering of these blocks
means that some good strategies
are not considered. The non-
nested version of the query is
typically optimized better.

SELECT S.sname
FROM Sailors S
WHERE EXISTS
 (SELECT *
 FROM Reserves R
 WHERE R.bid=103
 AND R.sid=S.sid)

 Nested block to optimize:
 SELECT *
 FROM Reserves R
 WHERE R.bid=103
 AND S.sid= outer value

Equivalent non-nested query:
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid
 AND R.bid=103

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Summary
v  Query optimization is an important task in a

relational DBMS.
v  Must understand optimization in order to understand

the performance impact of a given database design
(relations, indexes) on a workload (set of queries).

v  Two parts to optimizing a query:
§  Consider a set of alternative plans.

• Must prune search space; typically, left-deep plans only.

§  Must estimate cost of each plan that is considered.
• Must estimate size of result and cost for each plan node.
• Key issues: Statistics, indexes, operator implementations.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Summary (Contd.)
v  Single-relation queries:

§  All access paths considered, cheapest is chosen.
§  Issues: Selections that match index, whether index key has

all needed fields and/or provides tuples in a desired order.

v  Multiple-relation queries:
§  All single-relation plans are first enumerated.

• Selections/projections considered as early as possible.

§  Next, for each 1-relation plan, all ways of joining another
relation (as inner) are considered.

§  Next, for each 2-relation plan that is `retained’, all ways of
joining another relation (as inner) are considered, etc.

§  At each level, for each subset of relations, only best plan for
each interesting order of tuples is `retained’.

