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Relational Query Optimization 

Chapter 15 
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Highlights of System R Optimizer 

v  Impact: 
§  Most widely used currently; works well for < 10 joins. 

v  Cost estimation:  Approximate art at best. 
§  Statistics, maintained in system catalogs, used to estimate 

cost of operations and result sizes. 
§  Considers combination of CPU and I/O costs. 

v  Plan Space:  Too large, must be pruned. 
§  Only the space of left-deep plans is considered. 

• Left-deep plans allow output of each operator to be pipelined into 
the next operator without storing it in a temporary relation. 

§  Cartesian products avoided. 
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Overview of Query Optimization 

v  Plan:  Tree of R.A. ops, with choice of alg for each op. 
§  Each operator typically implemented using a `pull’ 

interface: when an operator is `pulled’ for the next output 
tuples, it `pulls’ on its inputs and computes them. 

v  Two main issues: 
§  For a given query, what plans are considered? 

• Algorithm to search plan space for cheapest (estimated) plan. 

§  How is the cost of a plan estimated? 

v  Ideally: Want to find best plan.  Practically: Avoid 
worst plans! 

v  We will study the System R approach. 
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Schema for Examples 

v  Similar to old schema; rname added for variations. 
v  Reserves: 

§  Each tuple is 40 bytes long,  100 tuples per page, 1000 pages. 

v  Sailors: 
§  Each tuple is 50 bytes long,  80 tuples per page, 500 pages.  

Sailors (sid: integer, sname: string, rating: integer, age: real) 
Reserves (sid: integer, bid: integer, day: dates, rname: string) 
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Query Blocks: Units of Optimization 

v  An SQL query is parsed into a 
collection of query blocks, and these 
are optimized one block at a time. 

v  Nested blocks are usually treated as 
calls to a subroutine, made once per 
outer tuple.  (This is an over-
simplification, but serves for now.) 

SELECT  S.sname 
FROM  Sailors S 
WHERE  S.age IN  
     (SELECT  MAX (S2.age) 
       FROM  Sailors S2 
       GROUP BY  S2.rating) 

Nested block Outer block 
v  For each block, the plans considered are: 

–   All available access methods, for each reln in FROM clause. 
–   All left-deep join trees (i.e., all ways to join the relations one-
at-a-time, with the inner reln in the FROM clause, considering 
all reln permutations and join methods.) 
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Relational Algebra Equivalences 

v  Allow us to choose different join orders and to 
`push’ selections and projections ahead of joins. 

v  Selections:                                                            (Cascade) 
 
 

( ) ( )( )σ σ σc cn c cnR R1 1∧ ∧ ≡... . . .

( )( ) ( )( )σ σ σ σc c c cR R1 2 2 1≡ (Commute) 

v   Projections: ( ) ( )( )( )π π πa a anR R1 1≡ . . . (Cascade) 

v   Joins: R      (S     T)      (R     S)      T    ≡ (Associative) 

(R     S)      (S     R)   ≡ (Commute) 

R      (S     T)      (T     R)      S    Show that:   ≡   
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More Equivalences 

v  A projection commutes with a selection that only 
uses attributes retained by the projection. 

v  Selection between attributes of the two arguments of 
a cross-product converts cross-product to a join. 

v  A selection on just attributes of R commutes with          
R       S.   (i.e.,     (R      S)          (R)      S ) 

v  Similarly, if a projection follows a join R      S, we can 
`push’ it by retaining only attributes of R (and S) that 
are needed for the join or are kept by the projection. 

 σ  σ≡




Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 8 

Enumeration of Alternative Plans 

v  There are two main cases: 
§  Single-relation plans 
§  Multiple-relation plans 

v  For queries over a single relation, queries consist of a 
combination of selects, projects, and aggregate ops: 
§  Each available access path (file scan / index) is considered, 

and the one with the least estimated cost is chosen. 
§  The different operations are essentially carried out 

together (e.g., if an index is used for a selection, projection 
is done for each retrieved tuple, and the resulting tuples 
are pipelined into the aggregate computation).  
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Cost Estimation 

v  For each plan considered, must estimate cost: 
§  Must estimate cost of each operation in plan tree. 

• Depends on input cardinalities. 
• We’ve already discussed how to estimate the cost of 

operations (sequential scan, index scan, joins, etc.) 

§  Must also estimate size of result for each operation 
in tree! 

• Use information about the input relations. 
• For selections and joins, assume independence of 

predicates. 
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Cost Estimates for Single-Relation Plans 

v  Index I on primary key matches selection: 
§  Cost is Height(I)+1 for a B+ tree, about 1.2 for hash index. 

v  Clustered index I matching one or more selects: 
§  (NPages(I)+NPages(R)) * product of RF’s of matching selects. 

v  Non-clustered index I matching one or more selects: 
§  (NPages(I)+NTuples(R)) * product of RF’s of matching selects. 

v  Sequential scan of file: 
§  NPages(R). 

 Note: Typically, no duplicate elimination on projections! 
(Exception:  Done on answers if user says DISTINCT.) 
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Example 

v  If we have an index on rating: 
§  (1/NKeys(I)) * NTuples(R) = (1/10) * 40000 tuples retrieved. 
§  Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R)) = 

(1/10) * (50+500) pages are retrieved. (This is the cost.) 
§  Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R)) 

= (1/10) * (50+40000) pages are retrieved.   

v  If we have an index on sid: 
§  Would have to retrieve all tuples/pages.  With a clustered 

index, the cost is 50+500, with unclustered index, 50+40000. 

v  Doing a file scan: 
§  We retrieve all file pages (500). 

SELECT  S.sid 
FROM  Sailors S 
WHERE  S.rating=8 
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Queries Over Multiple Relations 
v  Fundamental decision in System R:  only left-deep join 

trees are considered. 
§  As the number of joins increases, the number of alternative 

plans grows rapidly; we need to restrict the search space. 
§  Left-deep trees allow us to generate all fully pipelined plans. 

• Intermediate results not written to temporary files. 
• Not all left-deep trees are fully pipelined (e.g., SM join). 
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Enumeration of Left-Deep Plans 
v  Left-deep plans differ only in the order of relations, 

the access method for each relation, and the join 
method for each join. 

v  Enumerated using N passes (if N relations joined): 
§  Pass 1:  Find best 1-relation plan for each relation. 
§  Pass 2:  Find best way to join result of each 1-relation plan 

(as outer) to another relation.  (All 2-relation plans.)   
§  Pass N:  Find best way to join result of a (N-1)-relation plan 

(as outer) to the N’th relation.  (All N-relation plans.) 

v  For each subset of relations, retain only: 
§  Cheapest plan overall, plus 
§  Cheapest plan for each interesting order of the tuples. 
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Enumeration of Plans (Contd.) 

v  ORDER BY, GROUP BY, aggregates etc. handled as a 
final step, using either an `interestingly ordered’ 
plan or an addional sorting operator. 

v  An N-1 way plan is not combined with an 
additional relation unless there is a join condition 
between them, unless all predicates in WHERE have 
been used up. 
§  i.e., avoid Cartesian products if possible. 

v  In spite of pruning plan space, this approach is still 
exponential in the # of tables. 
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Cost Estimation for Multirelation Plans 

v  Consider a query block: 
v  Maximum # tuples in result is the product of the 

cardinalities of relations in the FROM clause. 
v  Reduction factor (RF) associated with each term reflects 

the impact of the term in reducing result size.  Result 
cardinality = Max # tuples  *  product of all RF’s. 

v  Multirelation plans are built up by joining one new 
relation at a time. 
§  Cost of join method, plus estimation of join cardinality 

gives us both cost estimate and result size estimate 

SELECT  attribute list 
FROM  relation list 
WHERE  term1 AND ... AND termk 
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Example 
v  Pass1: 

§  Sailors:  B+ tree matches rating>5,                               
and is probably cheapest.  However,                             
if this selection is expected to                               
retrieve a lot of tuples, and index is              
unclustered, file scan may be cheaper. 

• Still, B+ tree plan kept (because tuples are in rating order). 

§  Reserves:  B+ tree on bid matches bid=500; cheapest.  

Sailors: 
  B+ tree on rating 
  Hash on sid 
Reserves: 
  B+ tree on bid 

  Pass 2: 
–  We consider each plan retained from Pass 1 as the outer, 
and consider how to join it with the (only) other relation. 

  e.g., Reserves as outer:  Hash index can be used to get Sailors tuples  
   that satisfy sid = outer tuple’s sid value. 

Reserves Sailors 

sid=sid 

bid=100  rating > 5 

sname 



Database Management Systems 3ed,  R. Ramakrishnan and J. Gehrke 17 

Nested Queries 

v  Nested block is optimized 
independently, with the outer 
tuple considered as providing a 
selection condition. 

v  Outer block is optimized with 
the cost of `calling’ nested block 
computation taken into account. 

v  Implicit ordering of these blocks 
means that some good strategies 
are not considered.  The non-
nested version of the query is 
typically optimized better. 

SELECT  S.sname 
FROM  Sailors S 
WHERE EXISTS  
   (SELECT  * 
    FROM  Reserves R 
    WHERE  R.bid=103  
     AND  R.sid=S.sid) 

 Nested block to optimize: 
 SELECT  * 
 FROM  Reserves R 
 WHERE  R.bid=103  
     AND  S.sid= outer value 

Equivalent non-nested query: 
SELECT  S.sname 
FROM Sailors S, Reserves R 
WHERE  S.sid=R.sid  
   AND R.bid=103 
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Summary 
v  Query optimization is an important task in a 

relational DBMS. 
v  Must understand optimization in order to understand 

the performance impact of a given database design 
(relations, indexes) on a workload (set of queries). 

v  Two parts to optimizing a query: 
§  Consider a set of alternative plans. 

• Must prune search space; typically, left-deep plans only. 

§  Must estimate cost of each plan that is considered. 
• Must estimate size of result and cost for each plan node. 
• Key issues: Statistics, indexes, operator implementations. 
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Summary (Contd.) 
v  Single-relation queries: 

§  All access paths considered, cheapest is chosen. 
§  Issues:  Selections that match index, whether index key has 

all needed fields and/or provides tuples in a desired order. 

v  Multiple-relation queries: 
§  All single-relation plans are first enumerated. 

• Selections/projections considered as early as possible. 

§  Next, for each 1-relation plan, all ways of joining another 
relation (as inner) are considered. 

§  Next, for each 2-relation plan that is `retained’, all ways of 
joining another relation (as inner) are considered, etc. 

§  At each level, for each subset of relations, only best plan for 
each interesting order of tuples is `retained’.  


