
ECS 165B: Database System Implementation
Lecture 7

UC Davis
April 13, 2011



Announcements

Several reminders:

1. DavisDB Part 1 due Sunday at 11:59pm

2. Don’t forget about the writeup (writeup.txt) when
submitting your code

3. Style counts! Keep your code clean, simple, readable . . .

We’ll have “code review” meetings next week (stay tuned for
email)

DavisDB Part 2 (Index Manager) will be handed out Monday; due
Sunday, 5/1 at 11:59pm



Agenda

I Last time - A taste of database theory, Part 1: relational
algebra, relational calculus, and first-order logic

I Today - A taste of database theory, Part 2: containment and
equivalence of conjunctive queries

I Reading: none



Recall from last time: relational calculus (RC)

I Database query language based on first-order logic

I Syntax: expressions of the form

{(x1, . . . , xn) | ϕ(x1, . . . , xn)}

where ϕ(x1, . . . , xn) is a first-order formula with free variables
x1, . . . , xn.

I Semantics: return all tuples (a1, . . . , an) such that
ϕ(a1, . . . , an) is true in the database.



Example: relational calculus queries

Database with three relations: Class(classId, className, roomNo);
Student(studentId, studentName); and Takes(studentId, classId).

I “Find all students taking a class meeting in Wellman 1”

{(x) | ∃s∃c∃n Student(s, x) ∧ Takes(s, c)
∧Class(c , n, ”Wellman 1”)}

I “Find all pairs of students not taking a class together”

{(x , y) | ∃s∃s ′ Student(s, x) ∧ Student(s ′, y)∧
¬∃c(Takes(s, c) ∧ Takes(s ′, c))}



Review: main results from last time (1)

The first result from last time concerned expressiveness of SQL,
relational algebra (RA), and relational calculus (RC).

Theorem

Relational algebra and (safe) relational calculus are expressively
equivalent to each other and to the domain-independent fragment
of first-order logic (FO).

Thus, even though relational algebra and relational calculus are
syntactically very different, they are fundamentally two sides of the
same coin.



Review: main results from last time (2)

The connection between RA and RC can be exploited, e.g., to
show something about the fundamental problem of checking query
equivalence:

Theorem

Given two relational algebra (or relational calculus) queries, it is
undecidable to determine whether they are equivalent, i.e., agree
on all database instances.



Episode IV: a New Hope

I Today we’ll look at an important fragment of these query
languages where equivalence is decidable: so-called
conjunctive queries

I We’ll also see some advanced query optimizations based on
these results, useful for removing redundancy from queries



What is a conjunctive query?

In SQL: query that uses only select-from-where; no inequalities
in where clause; no union or difference

select R.A, S.C

from R, S

where R.B = S.B

In RA: query that uses only π, σ,× (no ∪,−): e.g.,

π1,4(σ2=3(R × S))

In RC: query whose formula is conjunctive (no ∨,¬ or ∀): e.g.,

{(x , z) | ∃z R(x , y) ∧ S(y , z)}



The three definitions of conjunctive queries agree

Theorem

The conjunctive fragments of SQL, RA, and RC defined on the
previous slide are all expressively equivalent. Also, one can easily
convert a conjunctive query from SQL to RA, RA to RC, and RC
to SQL.



What we’ll look at: query containment and equivalence

Equivalence. Given queries Q, Q ′, is Q equivalent to Q ′?
(Answers to Q and Q ′ are the same on all databases.)

This fundamental problem underlies advanced query optimizations,
and has many other applications in databases. A related problem
also of fundamental interest:

Containment. Given queries Q, Q ′, is Q contained in Q ′?
(Answers to Q are always a subset of the answers to Q ′.)

If we can check containment, then we can also check equivalence!



What we’re going to see today

1. Containment (and equivalence) of conjunctive queries is
decidable; complexity is NP-complete

2. Can minimize conjunctive queries, to eliminate redundancy



Why are conjunctive queries “easy”?

Key insight: the body of a conjunctive query

{(x , y , z) | ∃u R(x , y) ∧ R(x , z) ∧ S(y , u, z)}

can be viewed as a database!

R :
x y

x z
S : y u z

This is called the “canonical database” for the query. Here we’ve
“frozen” the variables in the query, viewing them as ordinary
(constant) values.



Using the canonical database

I We’re given conjunctive queries

Q = {(x1, . . . , xn) | ϕ(x1, . . . , xn)}
Q ′ = {(y1, . . . , ym) | ψ(y1, . . . , ym)}

We want to check whether Q is contained in Q ′.

I It turns out that you can do the following:

1. Take the canonical database for Q
2. Evaluate query Q ′ on it
3. See if (x1, . . . , xn) is in the answer!

(x1, . . . , xn) will be in the answer iff Q is contained in Q ′



Examples: checking containment (on board)

1.

Q = {(u, v) | R(u, v)}
Q ′ = {(x , y) | ∃z R(x , y) ∧ R(x , z)}

2.

Q = {(u) | ∃v∃w R(u, v) ∧ S(v ,w)}
Q ′ = {(x) | ∃y∃z R(x , y) ∧ R(x , z)}

3.

Q = {(u, v ,w) | R(u, v) ∧ S(v ,w)}
Q ′ = {(x , y , z) | R(x , y) ∧ S(x , z)}



Complexity of checking query containment

Theorem

Checking containment of conjunctive queries is NP-complete

Proof.

(Sketch) Reduction from 3-coloring problem

Note, queries in practice are usually small, so here is one place
where NP-completeness isn’t necessarily so bad.



An advanced optimization: query minimization

I We already saw an example of a query containing
“redundancy:”

{(x , y) | R(x , y) ∧ R(x , z)}

I You probably wouldn’t write such an inefficient query; but,
your program might!

I “Middleware” layers very common these days; use complicated
automatically-generated queries.

I Can we systematically eliminate such redundancies?

I Yes! Using query minimization



How minimization works

Input: a conjunctive query Q = {(x̄) | R1(x̄), . . . ,Rn(x̄)}
1. for i from 1 to n {
2. let Q ′ be Q with Ri (x̄) removed

3. check if Q ′ is contained in Q

4. if so, remove Ri from Q and continue

5. else, leave Q alone and continue

6. }



Characterizing the result of minimization

Theorem

If Q,Q ′ are equivalent conjunctive queries, then minimizing Q and
minimizing Q ′ will produce the same query (up to isomorphism)

“Up to isomorphism” just means up to renaming of variables



Summary

I We looked at an important fragment of SQL/RA/RC called
conjunctive queries

I We saw that the fundamental problems of containment and
equivalence are decidable (and NP-complete)

I We used this to derive a minimization procedure (eliminate
redundancies from conjunctive queries)

Historical note: these results were first shown in a paper by
Chandra and Merlin (1977) that helped get the nascent field of
database theory off the ground


