ECS 165B: Database System Implementation
Lecture 9

UC Davis
April 18, 2011

Acknowledgements: portions based on slides by Raghu Ramakrishnan and
Johannes Gehrke.

Class Agenda

* Last time:
— Overview of indexing

* Today:
— Overview of indexing, cont’d
— Tree-structured indexes

 Reading
— Chapter 14

Announcements

Extra office hours today after class: 10am-12pm

Thanks for your hard work on Part 1!

Stay tuned for code review sign-up sheet

Tree-Structured Indexes

Introduction

As for any index, 3 alternatives for data entries k*:
— Data record with key value k
— <Kk, rid of data record with search key value k>
— <Kk, list of rids of data records with search key k>

Choice is orthogonal to the indexing technique used to
locate data entries k*.

Tree-structured indexing techniques support both range
searches and equality searches.

ISAM: static structure; B+ tree: dynamic, adjusts gracefully
under inserts and deletes.

Range Searches

* “Find all students with gpa > 3.0"’

— If datais in sorted file, do binary search to find first such student,
then scan to find others.

— Cost of binary search can be quite high.

 Simple idea: Create an ‘index’ file.

L, K1 k2 kN Index File
4 N\

Page 1 Page 2 Page 3 Page N Data File

w Can do binary search on (smaller) index file!

index entr¥

Po | K |P,| Ko|P K _|Pm

* Index file may still be quite large. But we can apply the idea
repeatedly!

Non-leaf ‘l
Pages °<-
' '

= T3\ A A A
Leaf oo oo oo oo
Pages D D " P

Overflow ------- > //’/,x"
page

Primary pages

w Leaf pages contain data entries.

B+ Tree: Most Widely Used Index

Insert/delete at log - N cost; keep tree height-balanced.

(F = fanout, N = # leaf pages)
Minimum 50% occupancy (except for root). Each node
contains d <= m <= 2d entries. The parameter d is called the

order of the tree.
Supports both equality and range-searches efficiently.

Index Entries
(Direct search)

Data Entries
("Sequence set")

Example B+ Tree

* Search begins at root, and key comparisons direct it to a leaf

Search for 5*, 15*, all data entries >=24* ...

Root \

13

17

24

30

2*

3*

5*

7*

14*

16*

19*

20"

22*

24*

27*

29*

33*

34*

38*

39*

w Based on the search for 15%, we know it is not in the tree!

B+ Trees in Practice

* Typical order: 100. Typical fill-factor: 67%.
— average fanout =133

* Typical capacities:
— Height 4: 1334 =312,900,700 records
— Height 3:1333= 2,352,637 records

* (Can often hold top levels in buffer pool:
— Levell-= 1 page = 8 Kbytes
— Level2= 133 pages= 1 Mbyte
— Level 3=17,689 pages = 133 MBytes

Inserting a Data Entry into a B+ Tree

Find correct leaf L.

Put data entry onto L.
— If L has enough space, done!
— Else, must split L (into L and a new node L2)
e Redistribute entries evenly, copy up middle key.
* Insert index entry pointing to L2 into parent of L.

This can happen recursively

— To split index node, redistribute entries evenly, but push up middle
key. (Contrast with leaf splits.)

Splits “grow” tree; root split increases height.

— Tree growth: gets wider or one level taller at top.

Inserting 8* into Example B+ Tree

Observe how
minimum
occupancy is
guaranteed in
both leaf and
index pg splits.

Note difference
between copy-up
and push-up; be
sure you
understand the
reasons for this.

—
C

Entry to be inserted in parent node.

(Note that 5 is copied up and
continues to appear in the leaf.)

K\ \\X
7*

Entry to be inserted in parent node.
(Note that 17 is pushed up and only

appears once in the index. Contrast

this with a leaf split.)

o* | 3* 5* 8*
17 </’S
5 13 24| 30
y bo¥

Example B+ Tree After Inserting 8*

/'

Roo&

17

\

5 || 13 24 || 30
7 N b 7 ~
2*| 3 5% | 7| 8* 14*| 16* 191 20% 22* 24*| 27+ 29 33| 34| 38%| 39*
» Notice that root was split, leading to increase in height.
“ In this example, we can avoid split by re-distributing entries;

however, this is usually not done in practice.

Deleting a Data Entry from a B+ Tree

Start at root, find leaf L where entry belongs.

Remove the entry.
— If Lis at least half-full, done!
— If L has only d-1 entries,

* Try to re-distribute, borrowing from sibling (adjacent
node with same parentas L).

* If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L or sibling)
from parent of L.

Merge could propagate to root, decreasing height.

Example Tree After (Inserting 8*, Then) Deleting 19*
and 20* ...

ROON

17

/'

e

[-\

\ \

27

30

y

T

ﬁ\;*

13
7*

X
* 14*(16*

8

221

24

27*

29*

33*

34*

38*

39*

Deleting 19* is easy.

Deleting 20* is done with re-distribution. Notice how

middle key is copied up.

... And Then Deleting 24*

\\\\\\\\\\\\ﬁi

* Must merge.
_ 30

* Observe toss’ of index :

entry (on right), and pull — / —

down’ of index entry 22+ | 27+ | 20 33+ | 34+ |38* | 30*

(below).

R;;;\\\\
5 13 17 30
KT z/////i:jj;x j P P

2* | 3" 54| 7| 8* 14* [16* 22* | 27*| 29* 33* | 34* | 38* [39*

Example of Non-leaf Re-distribution

* Tree is shown below during deletion of 24*. (What could be a
possible initial tree?)

Root\A

/’

13

17 20

/K\
* * *

22

\

In contrast to previous example, can re-distribute entry from
left child of root to right child.

Iy

30

| 16

174

18%

20%

217

227

27

29

m\&
A 33413443

8*

397

After Re-distribution

Intuitively, entries are re-distributed by pushing through’ the
splitting entry in the parent node.
It suffices to re-distribute index entry with key 20; we’ve re-
distributed 17 as well for illustration.

5 13

[A Il
/m! PR

ROCNA

17

ay

Za

20

22

30

2*

3* S* 7*| 8* 14*16*

177

184

21%

22%

277

297

33*

34*

38*

39*

Prefix Key Compression

* Important to increase fan-out. (Why?)

 Key values in index entries only ‘direct traffic’; can often
compress them.

- E.g., If we have adjacent index entries with search key values Dannon
Yogurt, David Smith and Devarakonda Murthy, we can abbreviate
David Smith to Dav. (The other keys can be compressed too ...)

* Is this correct? Not quite! What if there is a data entry Davey
Jones? (Can only compress David Smith to Davi)

* In general, while compressing, must leave each index entry
greater than every key value (in any subtree) to its left.

* |Insert/delete must be suitably modified.

Bulk Loading of a B+ Tree

If we have a large collection of records, and we want to create
a B+ tree on some field, doing so by repeatedly inserting
records is very slow.

Bulk Loading can be done much more efficiently.

Initialization: Sort all data entries, insert pointer to first (leaf)
page in a new (root) page.

Rok] _
Sorted pages of data entries; not yet in B+ tree

e

3* [4* ||| 6% | 9% | |10*|11*| |12*13%| [20*22* |23*|31* [35*[36%| [38*|41*| |44*

Bulk Loading (Contd.)

Root 10! |20

* |ndex entries for leaf / v

pages always entered 6 12 23135

| / | Il |

into right-most index j / J
£\ £\ £\

page just above leaf . /J !
level. When this fills | 34| | 6] 97| 10117 [12]13] |207224 [23131] |351367)||381417 |44

Data entry pages
not yet in B+ tree

-

up, it splits. (Split may
go up right-most path

to the root.) Root]| 20 \

* Much faster than | 10 | 35, Data entry pages
repeated inserts, / \ l \ notyetin B+ tree
especially when one 5 1 23 38
considers locking! ‘Z ' l / l / \

PR N YN N NN RN

3*[4*([6%]9*| [10%11% [121137 [20%22% (23%317 |35%36%| |38741%|||44"

Summary of Bulk Loading

* Option 1: multiple inserts.
— Slow.
— Does not give sequential storage of leaves.

* Option 2: Bulk Loading

— Has advantages for concurrency control.

— Fewer I/Os during build.
— Leaves will be stored sequentially (and linked, of course).
— Can control “fill factor” on pages.

A Note on Order’

Order (d) concept replaced by physical space criterion in

practice ("at least half-full’).
— Index pages can typically hold many more entries than leaf pages.
— Variable sized records and search keys mean differnt nodes will contain
different numbers of entries.

— Even with fixed length fields, multiple records with the same search key
value (duplicates) can lead to variable-sized data entries (if we use

Alternative (3)).

Summary

Tree-structured indexes are ideal for range-searches, also good
for equality searches.

ISAM is a static structure.

— Only leaf pages modified; overflow pages needed.

— Overflow chains can degrade performance unless size of data set and
data distribution stay constant.

B+ tree is a dynamic structure.

— Inserts/deletes leave tree height-balanced; log ¢ N cost.

— High fanout (F) means depth rarely more than 3 or 4.
— Almost always better than maintaining a sorted file.

Summary (Contd.)

— Typically, 67% occupancy on average.

— Usually preferable to ISAM, modulo /ocking considerations; adjusts to
growth gracefully.

— |If data entries are data records, splits can change rids!
Key compression increases fanout, reduces height.

Bulk loading can be much faster than repeated inserts for
creating a B+ tree on a large data set.

Most widely used index in database management systems

because of its versatility. One of the most optimized
components of a DBMS.

