ECS289F — Homework 1 Solutions

January 20, 2010

Problem 1. We say that σ -structures $\mathfrak{A} = \langle A, \{P_i^{\mathfrak{A}}\}, \{f_i^{\mathfrak{A}}\}, \{c_i^{\mathfrak{A}}\} \rangle$ and $\mathfrak{B} = \langle B, \{P_i^{\mathfrak{B}}\}, \{f_i^{\mathfrak{B}}\}, \{c_i^{\mathfrak{B}}\} \rangle$ are isomorphic if there exists a bijective mapping $h : A \to B$ such that

- for each k-ary predicate symbol P_i in σ and $\bar{a} \in A^k$, we have $\bar{a} \in P_i^{\mathfrak{A}}$ iff $h(\bar{a}) \in P_i^{\mathfrak{B}}$;
- for each k-ary function symbol f_i in σ and $\bar{a} \in A^k$, we have $h(f_i^{\mathfrak{A}}(\bar{a})) = f_i^{\mathfrak{B}}(h(\bar{a}))$; and
- for each constant symbol c_i in σ , we have $h(c_i^{\mathfrak{A}}) = c_i^{\mathfrak{B}}$.

Show that if \mathfrak{A} and \mathfrak{B} are isomorphic, then for any FO formula $\varphi(x_1, \ldots, x_n)$ and $\bar{a} \in A^k$, we have $\mathfrak{A} \models \varphi(\bar{a})$ iff $\mathfrak{B} \models \varphi(h(\bar{a}))$. (In other words, FO is generic.)

Solution. By induction on terms and formulae, we show that for any term t, $h(t^{\mathfrak{A}}(\bar{a})) = t^{\mathfrak{B}}(h(\bar{a}))$, and that for any formula φ , we have $\mathfrak{A} \models \varphi(\bar{a})$ iff $\mathfrak{B} \models \varphi(h(\bar{a}))$. In the base case:

- If t is a constant symbol c, then $h(t^{\mathfrak{A}}(\bar{a})) = h(c^{\mathfrak{A}}) = c^{\mathfrak{B}} = t^{\mathfrak{B}}(h(\bar{a}))$ as required.
- If t is a variable x_i , then $h(t^{\mathfrak{A}}(\bar{a})) = h(a_i) = t^{\mathfrak{B}}(h(\bar{a}))$.

In the inductive case, we assume that the claim holds for immediate sub-terms and sub-formulae.

• If $t = f(t_1, \ldots, t_k)$, we have

$$\begin{aligned} h(t^{\mathfrak{A}}(\bar{a})) &= h(f^{\mathfrak{A}}(t_{1}^{\mathfrak{A}}(\bar{a}), \dots, t_{k}^{\mathfrak{A}}(\bar{a}))) \\ &= f^{\mathfrak{B}}(h(t_{1}^{\mathfrak{A}}(\bar{a})), \dots, h(t_{k}^{\mathfrak{A}}(\bar{a}))) \\ &= f^{\mathfrak{B}}(t_{1}^{\mathfrak{B}}(h(\bar{a})), \dots, t_{k}^{\mathfrak{B}}(h(\bar{a}))) \end{aligned}$$
By assumption
$$&= t^{\mathfrak{B}}(h(\bar{a})) \end{aligned}$$
By inductive hypothesis

as required.

• If φ is $t_1 = t_2$, then we have

A

$$\models \varphi(\bar{a}) \quad \text{iff} \quad t_1^{\mathfrak{A}}(\bar{a}) = t_2^{\mathfrak{A}}(\bar{a})$$

$$\text{iff} \quad h(t_1^{\mathfrak{A}}(\bar{a})) = h(t_2^{\mathfrak{A}}(\bar{a})) \quad \text{Since } h \text{ is bijective}$$

$$\text{iff} \quad t_1^{\mathfrak{B}}(h(\bar{a})) = t_2^{\mathfrak{B}}(h(\bar{a})) \quad \text{By inductive hypothesis}$$

$$\text{iff} \quad \mathfrak{B} \models \varphi(h(\bar{a}))$$

as required.

• If φ is $P(t_1, \ldots, t_n)$, then we have

$$\begin{split} \mathfrak{A} \models \varphi(\bar{a}) & \text{iff} \quad (t_1^{\mathfrak{A}}(\bar{a}), \dots, t_n^{\mathfrak{A}}(\bar{a})) \in P^{\mathfrak{A}} \\ & \text{iff} \quad (h(t_1^{\mathfrak{A}}(\bar{a})), \dots, h(t_n^{\mathfrak{A}}(\bar{a}))) \in P^{\mathfrak{B}} \quad \text{By assumption} \\ & \text{iff} \quad (t_1^{\mathfrak{B}}(h(\bar{a})), \dots, t_n^{\mathfrak{B}}(h(\bar{a}))) \in P^{\mathfrak{B}} \quad \text{By inductive hypothesis} \\ & \text{iff} \quad \mathfrak{B} \models \varphi(\bar{a}) \end{split}$$

as required.

• If φ is $\varphi_1 \wedge \varphi_2$, then we have

$$\begin{split} \mathfrak{A} \models \varphi(\bar{a}) & \text{iff} \quad \mathfrak{A} \models \varphi_1(\bar{a}) \text{ and } \mathfrak{A} \models \varphi_2(\bar{a}) \\ & \text{iff} \quad \mathfrak{B} \models \varphi_1(h(\bar{a})) \text{ and } \mathfrak{B} \models \varphi_2(h(\bar{a})) \quad \text{By inductive hypothesis} \\ & \text{iff} \quad \mathfrak{B} \models \varphi(h(\bar{a})) \end{split}$$

as required. (The cases for \lor and \neg are similar.)

• If φ is $\exists x \ \varphi_1(x)$, then we have

$$\begin{split} \mathfrak{A} \models \varphi(\bar{a}) & \text{iff} \quad \mathfrak{A} \models \varphi_1(a',\bar{a}) \text{ for some } a' \in A \\ & \text{iff} \quad \mathfrak{B} \models \varphi_1(h(a'),h(\bar{a})) & \text{ By inductive hypothesis} \\ & \text{iff} \quad \mathfrak{B} \models \varphi(\bar{a}) \end{split}$$

as required. (The case for \forall is similar.)

Problem 2. Give an example of an FO sentence that is finitely valid but not valid. (You may assume any vocabulary σ that you wish.)

Solution. One such example is the FO sentence φ that says, "if \leq is a linear order over a non-empty domain, then there is a smallest element" (where the vocabulary consists of a single binary predicate \leq):

$$\begin{array}{ll} \varphi & \stackrel{\text{def}}{=} & ((\forall x \; \forall y \; (x \leq y \land y \leq x) \to x = y) & (\text{antisymmetry}) \\ & \land \; (\forall x \; \forall y \; \forall z \; (x \leq y \land y \leq z) \to x \leq z) & (\text{transitivity}) \\ & \land \; (\forall x \; \forall y \; x \leq y \lor y \leq x) & (\text{totality}) \\ & \land \; (\exists x \; x = x)) & (\text{non-emptiness}) \\ & \to \; (\exists x \; \forall y \; x \leq y) \end{array}$$

(Thanks to Daniel for pointing out the non-emptiness requirement.)

Problem 3. We say that relational calculus queries Q, Q' are equivalent if for every database instance I, we have $[\![Q]\!]^I = [\![Q']\!]^I$. Show that this problem is undecidable.

Solution. By reduction from checking finite validity of FO sentences, which is undecidable by Trakhtenbrot's Theorem. Given FO sentence φ , we construct Boolean (0-ary) relational calculus queries Q, Q' as follows:

$$\begin{array}{rcl} Q & \stackrel{\mathrm{def}}{=} & \{() \mid \varphi\} \\ Q' & \stackrel{\mathrm{def}}{=} & \{() \mid \mathsf{true}\} \end{array}$$

where true is shorthand for your favorite tautology, e.g., c = c where c is a constant symbol. Note that

$$\llbracket Q \rrbracket^I = \begin{cases} \{()\} & \text{if } I \models \varphi \\ \emptyset & \text{otherwise} \end{cases}$$
$$\llbracket Q' \rrbracket^I = \{()\} & \text{for any } I \end{cases}$$

and hence it is clear that Q and Q' are equivalent iff $\varphi \in \text{FIN-VALID}$.