

ECS289F — Homework 2

Out Friday, 1/22/10; due in class Friday, 1/27/10

Problem 1. Give an example of a relational calculus query Q , a database instance I , and a D where $\text{adom}(I) \cup \text{adom}(Q) \subseteq D \subseteq \mathbb{D}$ such that $\llbracket Q \rrbracket^{I/D}$, $\llbracket Q \rrbracket^{I/\text{adom}(I) \cup \text{adom}(Q)}$, and $\llbracket Q \rrbracket^{\mathbb{D}}$ are all *distinct*.

Problem 2. Prove that the relational algebra is domain-independent (as asserted without proof in class).

Problem 3. Denote by SPC (“select-project-cross product”) the fragment of the relational algebra where $-$ and \cup are disallowed. Prove that any SPC expression E can be rewritten equivalently in *normal form*

$$\pi_{i_1, \dots, i_k}(\{c_1\} \times \dots \times \{c_m\} \times \sigma(P_1 \times \dots \times P_n)),$$

where σ is shorthand for a sequence of selection operators (of either type $\sigma_{i=j}$ or $\sigma_{i=c}$). For example, if R and S are binary predicates, the SPC query

$$\pi_1(\sigma_{2=b}(R)) \times \sigma_{1=2}(\pi_{2,1}(S) \times \{d\})$$

may be written in normal form as

$$\pi_{2,4,3,1}(\{d\} \times \sigma_{2=b}(\sigma_{3=4}(R \times S))).$$