
ECS289F — Homework 3 Solutions

March 3, 2010

Problem 1. Prove that checking equivalence of CQs is NP-complete, by modifying the proof from
class of the same for containment.

Solution. Since checking containment is in NP and Q ≡ Q′ iff Q v Q′ and Q′ v Q, it is clear
that equivalence is also in NP. To show NP-hardness, here are two ways to do it:

1. Reduce containment to equivalence, by observing that Q v Q′ iff Q ∩ Q′ ≡ Q, and noting
that CQs are closed under intersection. Specifically, given CQs Q = 〈ū, T 〉 and Q′ = 〈ū′, T ′〉
with vars(T) and vars(T ′) disjoint and |ū| = |ū′| = k, their intersection is the CQ

Q ∩Q′ def= 〈ū, T ∪ T ′ ∪ {ui = u′
i | 1 ≤ i ≤ k}〉

2. Modify the reduction from 3-coloring used to show NP-hardness of the recognition (and
containment) problem for CQs. Recall that a graph G(V,E) is 3-colorable iff there exists
a graph homomorphism h : G → C3, where C3 is the complete 3-vertex graph. Let G′ be
the disjoint union of G and C3 (i.e., G′ has a copy of C3 and a copy of G, with disjoint
vertex sets). We observe, using similar reasoning as in the earlier reduction, that the CQs
corresponding to G′ and C3 are equivalent iff there exist graph homomorphisms f : G′ → C3

and g : C3 → G′. But it is easy to see that G is 3-colorable iff G′ is 3-colorable, hence we
have a graph homomorphism f : G′ → C3 iff we have one from G to C3, and in the other
direction, the identity mapping is a graph homomorpism g : C3 → G′.

(Note that the two proofs are essentially the same since the disjoint union of G and C3 used in the
second proof corresponds exactly to the graph of the intersection of their corresponding CQs.)

Problem 2. A union of conjunctive queries (UCQ) Q is a set Q = {Q1, . . . , Qn} of conjunctive
queries, with the semantics defined

[[Q]]I
def
=

n⋃
i=1

[[Qi]]I .

(a) Show that the problems of containment and equivalence for UCQs are easily interreducible.

(b) Show that the Chandra-Merlin Theorem for containment of conjunctive queries extends to UCQs
(you will need to restate it appropriately), and that the complexity of the problem remains the
same, i.e., NP-complete.

(c) Give a procedure for minimizing UCQs and show that, as for CQs, the result of this procedure
is unique up to isomorphism, where UCQs Q and Q′ are isomorphic if there is a bijection
h : Q→ Q′ such that for every CQ Q ∈ Q, Q is isomorphic to h(Q).

1

Solution.

(a) We have Q v Q′ iff Q ∪Q′ ≡ Q′ (and of course Q ≡ Q′ iff Q v Q′ and Q′ v Q).

(b) The extended version of the theorem (due to Sagiv and Yannakakis, 1980) can be stated as
follows.

Theorem 3. For UCQs Q,Q′ the following are equivalent:

1. Q v Q′

2. For every Qi ∈ Q there exists a containment mapping h : Q′
j → Qi for some Q′

j ∈ Q′

3. For every Qi = 〈ūi, T 〉 ∈ Q we have ūi ∈ [[Q′]]can(Qi)

Proof. To prove this, it suffices to show that Q v Q′ iff for every Qi ∈ Q there exists Q′
j ∈

Q′ such that Qi v Q′
j . (The equivalence of 1–3 then follows by Chandra-Merlin.) “⇐” is

obvious. For “⇒,” suppose Q v Q′, and choose arbitrarily some Qi = 〈ūi, Ti〉 ∈ Q. Clearly
ūi ∈ [[Q]]can(Qi), hence ūi ∈ [[Q′]]can(Qi) and in particular ūi ∈ [[Q′

j]]
can(Qi) for some Q′

j ∈ Q′.
Using Chandra-Merlin, we conclude Qi v Q′

j , as required.

Given the theorem above, it is obvious that containment of UCQs is in NP (since we can just
guess the containment mappings). Moreover, for CQs Q,Q′ we have Q v Q′ iff {Q} v {Q′},
hence it is NP-hard as well.

(c) The procedure to minimize a UCQ Q is as follows: let Q1, . . . , Qk be an arbitrary ordering
of the CQs in Q; throw out any Qi such that Qi v Qj for some j > i; then minimize each
CQ in the result. It is clear that the result of this process will be unique up to isomorphism.
Moreover, one can check that it will be minimal according to the following equivalent criteria:

• (global minimality) A UCQ Q is said to be globally minimal if for any equivalent UCQ
Q′, the total number of atoms in all CQs in Q is less than or equal to the same for Q′.

• (local minimality) Define a subquery of a UCQ Q to be a UCQ obtained from Q as follows:
choose some subset Q′ ⊆ Q (not necessarily a strict subset), then replace each CQ Q in
Q′ with a subquery of Q. Then Q is said to be locally minimal if any subquery Q′ of Q
that is equivalent to Q is identical to Q.

Finally, using similar reasoning as for CQs, one can check that for minimal UCQs, equivalence
implies isomorphism.

Problem 4. Denote by SPCU (“select-project-cross product-union”) the fragment of the relational
algebra where set difference is disallowed.

(a) Show that any SPCU query can be rewritten equivalently as a union of SPC queries and that
this implies that SPCUs are expressively equivalent to UCQs.

(b) Give an example of an SPCU expression such that the corresponding union of SPC expressions
(and hence the corresponding UCQ) is exponentially larger.

2

(c) Recall that Πp
2 is the complement of Σp

2, the class of languages decidable in nondeterministic
polynomial time with access to an oracle for NP. The canonical example of a Πp

2-complete
problem is Q3-SAT (“quantified 3-SAT”): given a Boolean formula F = B1 ∧ · · · ∧ Bn in
conjunctive normal form with three literals in each clause (3-CNF), and a subset X of the
variables in F , decide if F is satisfiable for every assignment of the variables in X.

Show that containment of SPCU queries is in Πp
2.

(d) Extra credit. Show that containment of SPCU queries is Πp
2-hard.

Solution.

(a) We can accomplish this rewriting by repeatedly applying the following transformations:

E1 × (E2 ∪ E3) = (E1 × E2) ∪ (E1 × E3)
(E1 ∪ E2)× E3 = (E1 × E3) ∪ (E2 × E3)
σi=j(E1 ∪ E2) = σi=j(E1) ∪ σi=j(E2)
σi=c(E1 ∪ E2) = σi=c(E1) ∪ σi=c(E2)

πi1,...,ik(E1 ∪ E2) = πi1,...,ik(E1) ∪ πi1,...,ik(E2)

Since we know that any SPC expression can be translated into an equivalent CQ, it follows
that any SPCU expression can be translated into an equivalent UCQ. Moreover, any UCQ
can be translated into an equivalent SPCU expression using the SPC-to-CQ translation as a
subroutine.

(b) The SPCU expression
(R ∪ S)× · · · × (R ∪ S)

with n union operators, n−1 cross product operators, and 2n predicate symbols contains 2n−1
union operators, (n−1)2n cross product operators, and n·2n predicate symbols in normal form:

(R× · · · ×R) ∪ (S ×R× · · · ×R) ∪ (R× S × · · · ×R) ∪ · · · ∪ (S × · · · × S)

(c) Let E1, E2 be SPCU queries. Note that if E1 6v E2, then we have some CQ Q = 〈ū, T 〉 in the
UCQ Q corresponding to E1 such that ū 6∈ [[E2]]T . Now, note that we can view each CQ Q in
Q as being produced from E1 by the following procedure:

• for each (binary) union operation in E1, pick “left” or “right” and erase the subexpression
on that side (along with the union operator itself);

• the result is an SPC query, which can be translated (in polynomial time) into an equivalent
CQ.

Thus, the witness we use is a set of labels “left” or “right,” one for each union operator in
E1. From such a labeling, the corresponding CQ can be produced in polynomial time, and
non-containment in E2 can be verified in NP. Thus the problem is in Πp

2.

(d) See the proof of Theorem 19 in the paper by Sagiv and Yannakakis (J. ACM, 1980).

3

