
Models for Incomplete and Probabilistic
Information

Todd J. Green and Val Tannen

University of Pennsylvania
{tjgreen,val}@cis.upenn.edu

Abstract. We discuss, compare and relate some old and some new mod-
els for incomplete and probabilistic databases. We characterize the ex-
pressive power of c-tables over infinite domains and we introduce a new
kind of result, algebraic completion, for studying less expressive models.
By viewing probabilistic models as incompleteness models with addi-
tional probability information, we define completeness and closure un-
der query languages of general probabilistic database models and we
introduce a new such model, probabilistic c-tables, that is shown to be
complete and closed under the relational algebra.

1 Introduction

The representation of incomplete information in databases has been an impor-
tant research topic for a long time, see the references in [18], in Ch.19 of [2],
in [31], in [35, 25], as well as the recent [33, 30, 29]. Moreover, this work is closely
related to recently active research topics such as inconsistent databases and re-
pairs [4], answering queries using views [1], and data exchange [13]. The classic
reference on incomplete databases remains [20] with the fundamental concept
of c-table and its restrictions to simpler tables with variables. The most impor-
tant result of [20] is the query answering algorithm that defines an algebra on
c-tables that corresponds exactly to the usual relational algebra (RA). A recent
paper [29] has defined a hierarchy of incomplete database models based on fi-
nite sets of choices and optional inclusion. One of our contributions consists of
comparisons between the models [29] and the tables with variables from [20].

Two criteria have been provided for comparisons among all these models: [20,
29] discuss closure under relational algebra operations, while [29] also emphasizes
completeness, specifically the ability to represent all finite incomplete databases.
We point out that the latter is not appropriate for tables with variables over an
infinite domain, and we contribute another criterion, RA-completeness, that
fully characterizes the expressive power of c-tables.

We also introduce a new idea for the study of models that are not complete.
Namely, we consider combining existing models with queries in various frag-
ments of relational algebra. We then ask how big these fragments need to be to
obtain a combined model that is complete. We give a number of such algebraic
completion results.

2 Todd J. Green and Val Tannen

Early on, probabilistic models of databases were studied less intensively than
incompleteness models, with some notable exceptions [7, 5, 28, 23, 10]. Essential
progress was made independently in three papers [15, 22, 34] that were published
at about the same time. [15, 34] assume a model in which tuples are taken in-
dependently in a relation with given probabilities. [22] assumes a model with
a separate distribution for each attribute in each tuple. All three papers at-
tacked the problem of calculating the probability of tuples occurring in query
answers. They solved the problem by developing more general models in which
rows contain additional information (“event expressions”,“paths”,“traces”), and
they noted the similarity with the conditions in c-tables.

We go beyond the problem of individual tuples in query answers by defining
closure under a query language for probabilistic models. Then we develop a new
model, probabilistic c-tables that adds to the c-tables themselves probability
distributions for the values taken by their variables. Here is an example of such a
representation that captures the set of instances in which Alice is taking a course
that is Math with probability 0.3; Physics (0.3); or Chemistry (0.4), while Bob
takes the same course as Alice, provided that course is Physics or Chemistry and
Theo takes Math with probability 0.85:

Student Course Condition
Alice x
Bob x x = phys ∨ x = chem
Theo math t = 1

x =

math : 0.3
phys : 0.3
chem : 0.4

t =
{

0 : 0.15
1 : 0.85

The concept of probabilistic c-table allows us to solve the closure problem by
using the same algebra on c-tables defined in [20].

We also give a completeness result by showing that probabilistic boolean
c-tables (all variables are two-valued and can appear only in the conditions, not
in the tuples) can represent any probabilistic database.

An important conceptual contribution is that we show that, at least for the
models we consider, the probabilistic database models can be seen, as prob-
abilistic counterparts of incomplete database models. In an incompleteness
model a tuple or an attribute value in a tuple may or may not be in the database.
In its probabilistic counterpart, these are seen as elementary events with an as-
signed probability. For example, the models used in [15, 22, 34] are probabilistic
counterparts of the two simplest incompleteness models discussed in [29]. As
another example, the model used in [10] can be seen as the probabilistic coun-
terpart of an incompleteness model one in which tuples sharing the same key
have an exclusive-or relationship.

A consequence of this observation is that, in particular, query answering for
probabilistic c-tables will allow us to solve the problem of calculating probabil-
ities about query answers for any model that can be defined as a probabilistic
counterpart of the incompleteness models considered in [20, 29].

Models for Incomplete and Probabilistic Information 3

This paper is purely theoretical. Nonetheless, it was motivated by the work
the authors are doing with others on the Orchestra1 and SHARQ2 projects.
These projects are concerned with certain aspects of collaborative informa-
tion sharing. Incompleteness arises in Orchestra (a peer-to-peer data exchange
system) in the process of update propagation between sites. Incompleteness is
also exploited in query answering algorithms. Probabilistic models are used in
SHARQ (a bio-informatics data sharing system) to model approximate mappings
between schemas used by groups of researchers. The sources of uncertainty here
include data from error-prone experiments and accepted scientific hypotheses
that allow for the limited mismatch. We expect that the results of this paper
will help us in choosing appropriate representation systems that will be used
internally in the Orchestra and SHARQ systems.

2 Incomplete Information and Representation Systems

Our starting point is suggested by the work surveyed in [18], in Ch. 19 of [2],
and in [31]. A database that provides incomplete information consists of a set of
possible instances. At one end of this spectrum we have the conventional single
instances, which provide “complete information.” At the other end we have the
set of all allowable instances which provides “no information” at all, or “zero
information.”

We adopt the formalism of relational databases over a fixed countably infinite
domain D. We use the unnamed form of the relational algebra. To simplify the
notation we will work with relational schemas that consist of a single relation
name of arity n. Everything we say can be easily reformulated for arbitrary
relational schemas. We shall need a notation for the set of all (conventional)
instances of this schema, i.e., all the finite n-ary relations over D:

N := {I | I ⊆ Dn, I finite}

Definition 1. An incomplete(-information) database (i-database for short),
I, is a set of conventional instances, i.e., a subset I ⊆ N .

The usual relational databases correspond to the cases when I = {I}. The no-
information or zero-information database consists of all the relations: N .

Conventional relational instances are finite. However, because D is infinite
incomplete databases are in general infinite. Hence the interest in finite, syntac-
tical, representations for incomplete information.

Definition 2. A representation system consists of a set (usually a syntac-
tically defined “language”) whose elements we call tables, and a function Mod
that associates to each table T an incomplete database Mod(T).

1 http://www.cis.upenn.edu/~zives/orchestra
2 http://db.cis.upenn.edu/projects/SHARQ

4 Todd J. Green and Val Tannen

The notation corresponds to the fact that T can be seen as a logical assertion
such that the conventional instances in Mod(T) are in fact the models of T (see
also [27, 32]).

The classical reference [20] considers three representation systems: Codd
tables, v-tables, and c-tables. v-tables are conventional instances in which
variables can appear in addition to constants from D. If T is a v-table then3

Mod(T) := {ν(T) | ν : Var(T) → D is a valuation for the variables of T}

Codd tables are v-tables in which all the variables are distinct. They correspond
roughly to the current use of nulls in SQL, while v-tables model “labeled” or
“marked” nulls. c-tables are v-tables in which each tuple is associated with a
condition — a boolean combination of equalities involving variables and con-
stants. We typically use the letter ϕ for conditions. The tuple condition is tested
for each valuation ν and the tuple is discarded from ν(T) if the condition is not
satisfied.

Example 1. Here is an example of a v-table.

R :=
1 2 x
3 x y
z 4 5

Mod(R) =

 1 2 1
3 1 1
1 4 5

,
1 2 2
3 2 1
1 4 5

,
1 2 1
3 1 2
1 4 5

, . . . ,
1 2 77
3 77 89
97 4 5

, . . .

Example 2. Here is an example of a c-table.

S :=
1 2 x
3 x y x = y ∧ z 6= 2
z 4 5 x 6= 1 ∨ x 6= y

Mod(S) =
{

1 2 1
3 1 1 ,

1 2 2
1 4 5 , . . . ,

1 2 77
97 4 5 , . . .

}

Several other representation systems have been proposed in a recent pa-
per [29]. We illustrate here three of them and we discuss several others later. A
?-table is a conventional instance in which tuples are optionally labeled with
“?,” meaning that the tuple may be missing. An or-set-table looks like a con-
ventional instance but or-set values [21, 26] are allowed. An or-set value 〈1, 2, 3〉
signifies that exactly one of 1, 2, or 3 is the “actual” (but unknown) value.
Clearly, the two ideas can be combined yielding another representation systems
that we might (awkwardly) call or-set-?-tables.4

Example 3. Here is an example of an or-set-?-table.

T :=
1 2 〈1, 2〉
3 〈1, 2〉 〈3, 4〉

〈4, 5〉 4 5 ?
Mod(T) =

 1 2 1
3 1 3
4 4 5

,
1 2 1
3 1 3 ,

1 2 2
3 1 3
4 4 5

, . . . ,
1 2 2
3 2 4

3 We follow [2, 29] and use the closed-world assumption (CWA). [20] uses the open-

world assumption (OWA), but their results hold for CWA as well.
4 In [29] these three systems are denoted by R?, RA and RA

? .

Models for Incomplete and Probabilistic Information 5

3 RA-Completeness and Finite Completeness

“Completeness” of expressive power is the first obvious question to ask about
representation systems. This brings up a fundamental difference between the
representation systems of [20] and those of [29]. The presence of variables in a
table T and the fact that D is infinite means that Mod(T) may be infinite. For
the tables considered in [29], Mod(T) is always finite.

[29] defines completeness as the ability of a representation system to represent
“all” possible incomplete databases. For the kind of tables considered in [29] the
question makes sense. But in the case of the tables with variables in [20] this
is hopeless for trivial reasons. Indeed, in such systems there are only countably
many tables while there are uncountably many incomplete databases (the subsets
of N , which is infinite). We will discuss separately below finite completeness
for systems that only represent finite database. Meanwhile, we will develop a
different yardstick for the expressive power of tables with variables that range
over an infinite domain.

c-tables and their restrictions (v-tables and Codd tables) have an inherent
limitation: the cardinality of the instances in Mod(T) is at most the cardinality of
T . For example, the zero-information database N cannot be represented with c-
tables. It also follows that among the incomplete databases that are representable
by c-tables the “minimal”-information ones are those consisting for some m of all
instances of cardinality up to m (which are in fact representable by Codd tables
with m rows). Among these, we make special use of the ones of cardinality 1:

Zk := {{t} | t ∈ Dk}.

Hence, Zk consists of all the one-tuple relations of arity k. Note that Zk =
Mod(Zk) where Zk is the Codd table consisting of a single row of k distinct
variables.

Definition 3. An incomplete database I is RA-definable if there exists a re-
lational algebra query q such that I = q(Zk), where k is the arity of the input
relation name in q.

Theorem 1. If I is an incomplete database representable by a c-table T , i.e.,
I = Mod(T), then I is RA-definable.

Proof. Let T be a c-table, and let {x1, . . . , xk} denote the variables in T . We
want to show that there exists a query q in RA such that q(Mod(Zk)) = Mod(T).
Let n be the arity of T . For every tuple t = (a1, . . . , an) in T with condition ϕt,
let {xi1 , . . . , xij} be the variables in ϕt which do not appear in t. For 1 ≤ i ≤ n,
define Ci to be the singleton {c}, if ai = c for some constant c, or πj(Zk), if
ai = xj for some variable xj . For 1 ≤ j ≤ k, define Cn+j to be the expression
πij (Zk), where xj is the jth variable in ϕt which does not appear in t. Define q
to be the query

q :=
⋃
t∈T

π1,...,n(σψt(C1 × · · · × Cn+k)),

6 Todd J. Green and Val Tannen

where ψt is obtained from ϕt by replacing each occurrence of a variable xi with
the index j of the term Cj in which xi appears. To see that q(Mod(Zk)) =
Mod(T), since Zk is a c-table, we can use Theorem 4 and check that, in fact,
q̄(Zk) = T where q̄ is the translation of q into the c-tables algebra (see the proof
of Theorem 4). Note that we only need the SPJU fragment of RA. ut

Example 4. The c-table from Example 2 is definable as Mod(S) = q(Z3) where q
is the following query with input relation name V of arity 3: q(V) := π123({1}×
{2} × V) ∪ π123(σ2=3,4 6=‘2’({3} × V)) ∪ π512(σ3 6=‘1’,3 6=4({4} × {5} × V)).

Remark 1. It turns out that the i-databases representable by c-tables are also
definable via RA starting from the absolute zero-information instance, N . In-
deed, it can be shown (Proposition 4) that for each k there exists an RA query
q such that Zk = q(N). From there we can apply Theorem 1. The class of in-
complete databases {I | ∃q ∈ RA s.t. I = q(N)} is strictly larger than that
representable by c-tables, but it is still countable hence strictly smaller than
that of all incomplete databases. Its connections with FO-definability in finite
model theory might be interesting to investigate.

Hence, c-tables are in some sense “no more powerful” than the relational
algebra. But are they “as powerful”? This justifies the following:

Definition 4. A representation system is RA-complete if it can represent any
RA-definable i-database.

Since Zk is itself a c-table the following is an immediate corollary of the
fundamental result of [20] (see Theorem 4 below). It also states that the converse
of Theorem 1 holds.

Theorem 2. c-tables are RA-complete.

This result is similar in nature to Corollary 3.1 in [18]. However, the exact
technical connection, if any, is unclear, since Corollary 3.1 in [18] relies on the
certain answers semantics for queries.

We now turn to the kind of completeness considered in [29].

Definition 5. A representation system is finitely complete if it can represent
any finite i-database.

The finite incompleteness of ?-tables, or-set-tables, or-set-?-tables and other
systems is discussed in [29] where a finitely complete representation systemRA

prop

is also given (we repeat the definition in the Appendix). Is finite completeness a
reasonable question for c-tables, v-tables, and Codd tables? In general, for such
tables Mod(T) is infinite (all that is needed is a tuple with at least one variable
and with an infinitely satisfiable condition). To facilitate comparison with the
systems in [29] we define finite-domain versions of tables with variables.

Definition 6. A finite-domain c-table (v-table, Codd table) consists of a c-
table (v-table, Codd table) T together with a finite dom(x) ⊂ D for each variable
x that occurs in T .

Models for Incomplete and Probabilistic Information 7

Note that finite-domain Codd tables are equivalent to or-set tables. Indeed,
to obtain an or-set table from a Codd table, one can see dom(x) as an or-set and
substitute it for x in the table. Conversely, to obtain a Codd table from an or-set
table, one can substitute a fresh variable x for each or-set and define dom(x) as
the contents of the or-set.

In light of this connection, finite-domain v-tables can be thought of as a kind
of “correlated” or-set tables. Finite-domain v-tables are strictly more expressive
than finite Codd tables. Indeed, every finite Codd table is also a finite v-table.
But, the set of instances represented by e.g. the finite v-table {(1, x), (x, 1)}
where dom(x) = {1, 2} cannot be represented by any finite Codd table. Finite-
domain v-tables are themselves finitely incomplete. For example, the i-database
{{(1, 2)}, {(2, 1)}} cannot be represented by any finite v-table.

It is easy to see that finite-domain c-tables are finitely complete and hence
equivalent to [29]’s RA

prop in terms of expressive power. In fact, this is true even
for the fragment of finite-domain c-tables which we will call boolean c-tables,
where the variables take only boolean values and are only allowed to appear in
conditions (never as attribute values).

Theorem 3. Boolean c-tables are finitely complete (hence finite-domain c-tables
are also finitely complete).

Proof. Let I = {I1, I2, . . . , Im} be a finite i-database. Construct a boolean c-
table T such that Mod(T) = I as follows. Let ` := dlgme. For 1 ≤ i < m, put
all the tuples from Ii into T with condition ϕi, defined

ϕi :=
∧
j

¬xj ∧
∧
k

xk,

where the first conjunction is over all 1 ≤ j ≤ ` such that jth digit in the `-
digit binary representation of i − 1 is 0, and the second conjunction is over all
1 ≤ k ≤ ` such that the kth digit in the `-digit binary representation of i− 1 is
1. Finally, put all the tuples from Im into T with condition ϕm ∨ · · · ∨ ϕ2` . ut

Although boolean c-tables are complete there are clear advantages to using vari-
ables in tuples also, chief among them being compactness of representations

Example 5. Consider the finite c-table {(x1, x2, . . . , xm : true)} where dom(x1) =
dom(x2) = · · · = dom(xm) = {1, 2, . . . , n}. The equivalent boolean c-table has
nm tuples.

If we additionally restrict boolean c-tables to allow conditions to contain only
true or a single variable which appears in no other condition, then we obtain a
representation system which is equivalent to ?-tables.

Since finite c-tables and RA
prop are each finitely complete there is an ob-

vious näıve algorithm to translate back and forth between them: list all the
instances the one represents, then use the construction from the proof of finite
completeness for the other. Finding a more practical “syntactic” algorithm is an
interesting open question.

8 Todd J. Green and Val Tannen

4 Closure Under Relational Operations

Definition 7. A representation system is closed under a query language if for
any query q and any table T there is a table T ′ that represents q(Mod(T)).

(For notational simplicity we consider only queries with one input relation
name, but everything generalizes smoothly to multiple relation names.)

This definition is from [29]. In [2], a strong representation system is defined in
the same way, with the significant addition that T ′ should be computable from
T and q. It is not hard to show, using general recursion-theoretic principles,
that there exist representation systems (even ones that only represent finite i-
databases) which are closed as above but not strong in the sense of [2]. However,
the concrete systems studied so far are either not closed or if they are closed
then the proof provides also the algorithm required by the definition of strong
systems. Hence, we see no need to insist upon the distinction.

Theorem 4 ([20]). c-tables, finite-domain c-tables, and boolean c-tables are
closed under the relational algebra.

Proof. (Sketch.) We repeat here the essentials of the proof, including most of the
definition of the c-table algebra. For each operation u of the relational algebra [20]
defines an operation ū on c-tables as follows. For projection, we have

π̄`(T) := {(t′ : ϕt′) | t ∈ T s.t. π`(t) = t′, ϕt′ =
∨
ϕt}

where ` is a list of indexes and the disjunction is over all t in T such that
π`(t) = t′. For selection, we have

σ̄c(T) := {(t : ϕt ∧ c(t)) | (t, ϕt) ∈ T}

where c(t) denotes the result of evaluating the selection predicate c on the values
in t (for a boolean c-table, this will always be true or false, while for c-tables and
finite-domain c-tables, this will be in general a boolean formula on constants and
variables). For cross product and union, we have

T1 ×̄ T2 := {(t1 × t2 : ϕt1 ∧ ϕt2) | t1 ∈ T1, t2 ∈ T2}
T1 ∪̄ T2 := T1 ∪ T2

Difference and intersection are handled similarly. By replacing u’s by ū we trans-
late any relational algebra expression q into a c-table algebra expression q̄ and
it can be shown that

Lemma 1. For all valuations ν, ν(q̄(T)) = q(ν(T)).

From this, Mod(q̄(T)) = q(Mod(T)) follows immediately. ut

Models for Incomplete and Probabilistic Information 9

5 Algebraic Completion

None of the incomplete representation systems we have seen so far is closed under
the full relational algebra. Nor are two more representation systems considered
in [29], Rsetsand R⊕≡ (we repeat their definitions in the Appendix).

Proposition 1 ([20, 29]). Codd tables and v-tables are not closed under e.g.
selection. Or-set tables and finite v-tables are also not closed under e.g. selection.
?-tables, Rsets, and R⊕≡ are not closed under e.g. join.

We have seen that “closing” minimal-information one-row Codd tables (see
before Definition 4) {Z1, Z2, . . .}, by relational algebra queries yields equivalence
with the c-tables. In this spirit, we will investigate “how much” of the relational
algebra would be needed to complete the other representation systems consid-
ered. We call this kind of result algebraic completion.

Definition 8. If (T ,Mod) is a representation system and L is a query language,
then the representation system obtained by closing T under L is the set of ta-
bles {(T, q) | T ∈ T , q ∈ L} with the function Mod : T × L → N defined by
Mod(T, q) := q(Mod(T)).

We are now ready to state our results regarding algebraic completion.

Theorem 5 (RA-Completion).

1. The representation system obtained by closing Codd tables under SPJU
queries is RA-complete.

2. The representation system obtained by closing v-tables under SP queries is
RA-complete.

Proof. (Sketch.) For each case we show that given a arbitrary c-table T one can
construct a table S and a query q of the required type such that q̄(S) = T . Case
1 is a trivial corollary of Theorem 1. The details for Case 2 are in the Appendix.

ut

Note that in general there may be a “gap” between the language for which
closure fails for a representation system and the language required for comple-
tion. For example, Codd tables are not closed under selection, but at the same
time closing Codd tables under selection does not yield an RA-complete repre-
sentation system. (To see this, consider the incomplete database represented by
the v-table {(x, 1), (x, 2)}. Intuitively, selection alone is not powerful enough to
yield this incomplete database from a Codd table, as, selection operates on one
tuple at a time and cannot correlate two un-correlated tuples.) On the other
hand, it is possible that some of the results we present here may be able to be
“tightened” to hold for smaller query languages, or else proved to be “tight”
already. This is an issue we hope to address in future work.

We give now a set of analogous completion results for the finite case.

10 Todd J. Green and Val Tannen

Theorem 6 (Finite-Completion).

1. The representation system obtained by closing or-set-tables under PJ queries
is finitely complete.

2. The representation system obtained by closing finite v-tables under PJ or
S+P queries is finitely complete.

3. The representation system obtained by closing Rsets under PJ or PU queries
is finitely complete.

4. The representation system obtained by closing R⊕≡ under S+PJ queries is
finitely complete.

Proof. (Sketch.) In each case, given an arbitrary finite incomplete database, we
construct a table and query of the required type which yields the incomplete
database. The details are in the Appendix. ut

Note that there is a gap between the RA-completion result for Codd tables,
which requires SPJU queries, and the finite-completion result for finite Codd
tables, which requires only PJ queries. A partial explanation is that proof of
the latter result relies essentially on the finiteness of the i-database.

More generally, if a representation system can represent arbitrarily-large i-
databases, then closing it under RA yields a finitely complete representation
system, as the following theorem makes precise (see Appendix for proof).

Theorem 7 (General Finite-Completion). Let T be a representation sys-
tem such that for all n ≥ 1 there exists a table T in T such that |Mod(T)| ≥ n.
Then the representation system obtained by closing T under RA is finitely-
complete.

Corollary 1. The representation system obtained by closing ?-tables under RA
queries is finitely complete.

6 Probabilistic Databases and Representation Systems

Finiteness assumption For the entire discussion of probabilistic database
models we will assume that the domain of values D is finite. Infinite domains
of values are certainly interesting in practice; for some examples see [22, 33, 29].
Moreover, in the case of incomplete databases we have seen that they allow
for interesting distinctions.5 However, finite probability spaces are much simpler
than infinite ones and we will take advantage of this simplicity. We leave for
future investigations the issues related to probabilistic databases over infinite
domains.

We wish to model probabilistic information using a probability space whose
possible outcomes are all the conventional instances. Recall that for simplicity
we assume a schema consisting of just one relation of arity n. The finiteness of
D implies that there are only finitely many instances, I ⊆ Dn.
5 Note however that the results remain true if D is finite; we just require an infinite

supply of variables.

Models for Incomplete and Probabilistic Information 11

By finite probability space we mean a probability space (see e.g. [11])
(Ω,F ,P[]) in which the set of outcomes Ω is finite and the σ-field of events
F consists of all subsets of Ω. We shall use the equivalent formulation of pairs
(Ω, p) where Ω is the finite set of outcomes and where the outcome probability
assignment p : Ω → [0, 1] satisfies

∑
ω∈Ω p(ω) = 1. Indeed, we take P[A] =∑

ω∈A p(ω).

Definition 9. A probabilistic(-information) database (sometimes called
in this paper a p-database) is a finite probability space whose outcomes are
all the conventional instances, i.e., a pair (N , p) where

∑
I∈N p(I) = 1.

Demanding the direct specification of such probabilistic databases is unrealis-
tic because there are 2N possible instances, where N := |D|n, and we would
need that many (minus one) probability values. Thus, as in the case of incom-
plete databases we define probabilistic representation systems consisting
of “probabilistic tables” (prob. tables for short) and a function Mod that asso-
ciates to each prob. table T a probabilistic database Mod(T). Similarly, we define
completeness (finite completeness is the only kind we have in our setting).

To define closure under a query language we face the following problem. Given
a probabilistic database (N , p) and a query q (with just one input relation name),
how do we define the probability assignment for the instances in q(N)? It turns
out that this is a common construction in probability theory: image spaces.

Definition 10. Let (Ω, p) be a finite probability space and let f : Ω → Ω′ where
Ω′ is some finite set. The image of (Ω, p) under f is the finite probability space
(Ω′, p′) where 6 p′(ω′) :=

∑
f(ω)=ω′ p(ω).

Again we consider as query languages the relational algebra and its sublan-
guages defined by subsets of operations.

Definition 11. A probabilistic representation system is closed under a query
language if for any query q and any prob. table T there exists a prob. table T ′

that represents q(Mod(T)), the image space of Mod(T) under q.

7 Probabilistic ?-Tables and Probabilistic Or-Set Tables

Probabilistic ?-tables (p-?-tables for short) are commonly used for proba-
bilistic models of databases [34, 15, 16, 9] (they are called “independent tuple
representation in [30]). Such tables are the probabilistic counterpart of ?-tables
where each “?” is replaced by a probability value. Example 6 below shows such
a table. The tuples not explicitly shown are assumed tagged with probability 0.
Therefore, we define a p-?-table as a mapping that associates to each t ∈ Dn a
probability value pt. In order to represent a probabilistic database, papers using
this model typically include a statement like “every tuple t is in the outcome

6 It is easy to check that the p′(ω′)’s do actually add up to 1.

12 Todd J. Green and Val Tannen

instance with probability pt, independently from the other tuples” and then a
statement like

P[I] =
(∏
t∈I

pt

)(∏
t6∈I

(1− pt)
)
.

In fact, to give a rigorous semantics, one needs to define the events Et ⊆ N ,
Et := {I | t ∈ I} and then to prove the following.

Proposition 2. There exists a unique probabilistic database such that the events
Et are jointly independent and P[Et] = pt.

This defines p-?-tables as a probabilistic representation system. We shall
however provide an equivalent but more perspicuous definition. We shall need
here another common construction from probability theory: product spaces.

Definition 12. Let (Ω1, p1), . . . , (Ωn, pn) be finite probability spaces. Their prod-
uct is the space (Ω1 × · · · ×Ωn, p) where7 p(ω1, . . . , ωn) := p1(ω1) · · · pn(ωn).

This definition corresponds to the intuition that the n systems or phenomena
that are modeled by the spaces (Ω1, p1), . . . , (Ωn, pn) behave without “interfer-
ing” with each other. The following formal statements summarize this intuition.

Proposition 3. Consider the product of the spaces (Ω1, p1), . . . , (Ωn, pn). Let
A1 ⊆ Ω1, . . . , An ⊆ Ωn.
1. We have P[A1 × · · · ×An] = P[A1] · · ·P[An].
2. The events A1×Ω2× · · ·×Ωn, Ω1×A2× · · ·×Ωn, . . . , Ω1×Ω2× · · ·×An

are jointly independent in the product space.

Turning back to p-?-tables, for each tuple t ∈ Dn consider the finite proba-
bility space Bt := ({true, false}, p) where p(true) := pt and p(false) = 1−pt. Now
consider the product space

P :=
∏
t∈Dn

Bt

We can think of its set of outcomes (abusing notation, we will call this set P
also) as the set of functions from Dn to {true, false}, in other words, predicates
on Dn. There is an obvious function f : P → N that associates to each predicate
the set of tuples it maps to true.

All this gives us a p-database, namely the image of P under f . It remains to
show that it satisfies the properties in Proposition 2. Indeed, since f is a bijection,
this probabilistic database is in fact isomorphic to P . In P the events that are
in bijection with the Et’s are the Cartesian product in which there is exactly
one component {true} and the rest are {true, false}. The desired properties then
follow from Proposition 3.

We define now another simple probabilistic representation system called
probabilistic or-set-tables (p-or-set-tables for short). These are the proba-
bilistic counterpart of or-set-tables where the attribute values are, instead of
7 Again, it is easy to check that the outcome probability assignments add up to 1.

Models for Incomplete and Probabilistic Information 13

or-sets, finite probability spaces whose outcomes are the values in the or-set. p-
or-set-tables correspond to a simplified version of the ProbView model presented
in [22], in which plain probability values are used instead of confidence intervals.

Example 6. A p-or-set-table S, and a p-?-table T .

S :=
1 〈2 : 0.3, 3 : 0.7〉
4 5

〈6 : 0.5, 7 : 0.5〉 〈8 : 0.1, 9 : 0.9〉
T :=

1 2 0.4
3 4 0.3
5 6 1.0

A p-or-set-table determines an instance by choosing an outcome in each of
the spaces that appear as attribute values, independently. Recall that or-set
tables are equivalent to finite-domain Codd tables. Similarly, a p-or-set-table
corresponds to a Codd table T plus for each variable x in T a finite probability
space dom(x) whose outcomes are in D. This yields a p-database, again by image
space construction, as shown more generally for c-tables next in section 8.

Query answering The papers [15, 34, 22] have considered, independently,
the problem of calculating the probability of tuples appearing in query answers.
This does not mean that in general q(Mod(T)) can be represented by another
tuple table when T is some p-?-table and q ∈ RA (neither does this hold for p-
or-set-tables). This follows from Proposition 1. Indeed, if the probabilistic coun-
terpart of an incompleteness representation system T is closed, then so is T .
Hence the lifting of the results in Proposition 1 and other similar results.

Each of the papers [15, 34, 22] recognizes the problem of query answering
and solves it by developing a more general model in which rows contain addi-
tional information similar in spirit to the conditions that appear in c-tables (in
fact [15]’s model is essentially what we call probabilistic boolean c-tables, see
next section). We will show that we can actually use a probabilistic counter-
part to c-tables themselves together with the algebra on c-tables given in [20] to
achieve the same effect.

8 Probabilistic c-tables

Definition 13. A probabilistic c-table (pc-tables for short) consists of a
c-table T together with a finite probability space dom(x) (whose outcomes are
values in D) for each variable x that occurs in T .

To get a probabilistic representation system consider the product space

V :=
∏

x∈Var(T)

dom(x)

The outcomes of this space are in fact the valuations for the c-table T ! Hence
we can define the function g : V → N , g(ν) := ν(T) and then define Mod(T) as
the image of V under g.

Similarly, we can talk about boolean pc-tables, pv-tables and probabilistic
Codd tables (the latter related to [22], see previous section). Moreover, the p-?-
tables correspond to restricted boolean pc-tables, just like ?-tables.

14 Todd J. Green and Val Tannen

Theorem 8. Boolean pc-tables are complete (hence pc-tables are also complete).

Proof. Let I1, . . . , Ik denote the instances with non-zero probability in an arbi-
trary probabilistic database, and let p1, . . . , pk denote their probabilities. Con-
struct a probabilistic boolean c-table T as follows. For 1 ≤ i ≤ k − 1, put
the tuples from Ii in T with condition ¬x1 ∧ · · · ∧ ¬xi−1 ∧ xi. Put the tu-
ples from Ik in T with condition ¬x1 ∧ · · · ∧ ¬xk−1. For 1 ≤ i ≤ k − 1, set
P[xi = true] := pi/(1 −

∑i−1
j=1 pj). It is straightforward to check that this yields

a table such that P[Ii] = pi. ut

The previous theorem was independently observed in [30].

Theorem 9. pc-tables (and boolean pc-tables) are closed under the relational
algebra.

Proof. (Sketch.) For any pc-table T and any RA query q we show that the
probability space q(Mod(T)) (the image of Mod(T) under q) is in fact the same
as the space Mod(q̄(T)). The proof of Theorem 4 already shows that the outcomes
of the two spaces are the same. The fact that the probabilities assigned to each
outcome are the same follows from Lemma 1. ut

The proof of this theorem gives in fact an algorithm for constructing the an-
swer as a p-database itself, represented by a pc-table. In particular this will work
for the models of [15, 22, 34] or for models we might invent by adding probabilis-
tic information to v-tables or to the representation systems considered in [29].
The interesting result of [9] about the applicability of an “extensional” algorithm
to calculating answer tuple probabilities can be seen also as characterizing the
conjunctive queries q which for any p-?-table T are such that the c-table q̄(T) is
in fact equivalent to some p-?-table.

9 Some Ideas for Further Work

The new results on algebraic completion may not be as tight as they can be.
Ideally, we would like to be able show that for each representation system we
consider, the fragment of RA we use is minimal in the sense that closing the rep-
resentation system under a more restricted fragment does not obtain a complete
representation system.

We did not consider c-tables with global conditions [17] nor did we describe
the exact connection to logical databases [27, 32]. Even more importantly, we
did not consider complexity issues as in [3]. All of the above are important
topics for further work, especially the complexity issues and the related issues
of succinctness/compactness of the table representations.

As we see, in pc-tables the probability distribution is on the values taken by
the variables that occur in the table. The variables are assumed independent
here. This is a lot more flexible (as the example shows) than independent tuples,
but still debatable. Consequently, as part of the proposed work, trying to make

Models for Incomplete and Probabilistic Information 15

pc-tables even more flexible, we plan to investigate models in which the assump-
tion that the variables take values independently is relaxed by using conditional
probability distributions [14].

Space limitations prevent us from giving details, but there is a good reason
why the c-table algebra was in essence rediscovered in [15, 22, 34] and to some
extent in [28]. The condition that decorates a tuple t in q̄(T) can be seen as
the lineage [8], a.k.a. the why-provenance [6], of the tuple t. We plan to discuss
elsewhere the connection between algorithms for computing why-provenance and
the c-table algebra.

It would be interesting to connect this work to the extensive literature on
disjunctive databases, see e.g., [24], and to the work on probabilistic object-
oriented databases [12].

Probabilistic modeling is by no means the only way to model uncertainty in
information systems. In particular it would be interesting to investigate possi-
bilistic models [19] for databases, perhaps following again, as we did here, the
parallel with incompleteness.

References

1. S. Abiteboul and O. M. Duschka. Complexity of Answering Queries Using Mate-
rialized Views. In PODS, pages 254–263, 1998.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison–Wesley,
Reading, MA, 1995.

3. S. Abiteboul, P. Kanellakis, and G. Grahne. On the representation and querying
of sets of possible worlds. Theor. Comput. Sci., 78(1):159–187, 1991.

4. M. Arenas, L. E. Bertossi, and J. Chomicki. Answer sets for consistent query
answering in inconsistent databases. TPLP, 3(4-5):393–424, 2003.

5. D. Barbara, H. Garcia-Molina, and D. Porter. A probabilistic relational data
model. In EDBT, pages 60–74, New York, NY, USA, 1990.

6. P. Buneman, S. Khanna, and W. C. Tan. Why and Where: A Characterization of
Data Provenance. In ICDT, pages 316–330, 2001.

7. R. Cavallo and M. Pittarelli. The Theory of Probabilistic Databases. In VLDB,
pages 71–81, 1987.

8. Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view data in a ware-
housing environment. ACM Trans. Database Syst., 25(2):179–227, 2000.

9. N. Dalvi and D. Suciu. Efficient Query Evaluation on Probabilistic Databases. In
VLDB, pages 864–875, 2004.

10. D. Dey and S. Sarkar. A Probabilistic Relational Model and Algebra. ACM TODS,
21(3):339–369, 1996.

11. R. Durrett. Probability: Theory and Examples. Duxbury Press, 3rd edition, 2004.
12. T. Eiter, J. J. Lu, T. Lukasiewicz, and V. S. Subrahmanian. Probabilistic object

bases. ACM Trans. Database Syst., 26(3):264–312, 2001.
13. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and

query answering. In ICDT, pages 207–224, London, UK, 2003. Springer-Verlag.
14. N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic relational

models with structural uncertainty. In Proc. ICML, 2001.
15. N. Fuhr and T. Rölleke. A Probabilistic Relational Algebra for the Integration of

Information Retrieval and Database Systems. ACM TODS, 14(1):32–66, 1997.

16 Todd J. Green and Val Tannen

16. E. Grädel, Y. Gurevich, and C. Hirch. The Complexity of Query Reliability. In
PODS, pages 227–234, 1998.

17. G. Grahne. Horn Tables - An Efficient Tool for Handling Incomplete Information
in Databases. In PODS, pages 75–82. ACM Press, 1989.

18. G. Grahne. The Problem of Incomplete Information in Relational Databases, vol-
ume 554 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1991.

19. J. Y. Halpern. Reasoning About Uncertainty. MIT Press, Cambridge, MA, 2003.

20. T. Imieliński and W. Lipski, Jr. Incomplete Information in Relational Databases.
J. ACM, 31(4):761–791, 1984.

21. T. Imieliński, S. A. Naqvi, and K. V. Vadaparty. Incomplete objects — a data
model for design and planning applications. In SIGMOD, pages 288–297, 1991.

22. L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S. Subrahmanian. ProbView: a
Flexible Probabilistic Database System. ACM TODS, 22(3):419–469, 1997.

23. L. V. S. Lakshmanan and F. Sadri. Probabilistic deductive databases. In ILPS,
pages 254–268, Cambridge, MA, USA, 1994. MIT Press.

24. N. Leone, F. Scarcello, and V. S. Subrahmanian. Optimal Models of Disjunctive
Logic Programs: Semantics, Complexity, and Computation. IEEE Trans. Knowl.
Data Eng., 16(4):487–503, 2004.

25. L. Libkin. Aspects of Partial Information in Databases. PhD thesis, University of
Pennsylvania, 1994.

26. L. Libkin and L. Wong. Semantic representations and query languages for or-sets.
J. Computer and System Sci., 52(1):125–142, 1996.

27. R. Reiter. A sound and sometimes complete query evaluation algorithm for rela-
tional databases with null values. J. ACM, 33(2):349–370, 1986.

28. F. Sadri. Modeling Uncertainty in Databases. In ICDE, pages 122–131. IEEE
Computer Society, 1991.

29. A. D. Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working Models for Un-
certain Data. In To appear in ICDE, April 2006.

30. D. Suciu and N. Dalvi. Foundations of probabilistic answers to queries (tutorial).
In SIGMOD, pages 963–963, New York, NY, USA, 2005. ACM Press.

31. R. van der Meyden. Logical Approaches to Incomplete Information: A Survey. In
J. Chomicki and G. Saake, editors, Logics for Databases and Information Systems.
Kluwer Academic Publishers, Boston, 1998.

32. M. Y. Vardi. Querying Logical Databases. JCSS, 33(2):142–160, 1986.

33. J. Widom. Trio: A System for Integrated Management of Data, Accuracy, and
Lineage. In CIDR, Jan. 2005.

34. E. Zimányi. Query evaluation in probabilistic databases. Theoretical Computer
Science, 171(1–2):179–219, 1997.

35. E. Zimányi and A. Pirotte. Imperfect information in relational databases. In
Uncertainty Management in Information Systems, pages 35–88. Kluwer, 1996.

Appendix

Proposition 4. There exists a relational query q such that q(N) = Zn.

Proof. Define sub-query q′ to be the relational query

q′(V) := V − π`(σ` 6=r(V × V)),

Models for Incomplete and Probabilistic Information 17

where ` is short for 1, . . . , n and ` 6= r is short for 1 6= n+ 1∨ · · · ∨n 6= 2n. Note
that q′ yields V if V consists of a single tuple and ∅ otherwise. Now define q to
be the relational query

q(V) := q′(V) ∪ ({t} − π`({t} × q′(V))),

where t is a tuple chosen arbitrarily from Dn. It is clear that q(N) = Zn. ut

Definition 14. A table in the representation system Rsets is a multiset of sets
of tuples, or blocks, each such block optionally labeled with a ‘?’. If T is an Rsets

table, then Mod(T) is the set of instances obtained by choosing one tuple from
each block not labeled with a ‘?’, and at most one tuple from each block labeled
with a ‘?’.

Definition 15. A table in the representation system R⊕≡ is a multiset of tuples
{t1, . . . , tm} and a conjunction of logical assertions of the form i ⊕ j (meaning
ti or tj must be present in an instance, but not both) or i ≡ j (meaning ti is
present in an instance iff tj is present in the instance). If T is an R⊕≡ table
then Mod(T) consists of all subsets of the tuples satisfying the conjunction of
assertions.

Definition 16. A table in the representation system RA
prop is a multiset of or-

set tuples {t1, . . . , tm} and a boolean formula on the variables {t1, . . . , tm}. If T
is an RA

prop table then Mod(T) consists of all subsets of the tuples satisfying the
boolean assertion, where the variable ti has value true iff the tuple ti is present
in the subset.

Theorem 5 (RA-Completion).

1. The representation system obtained by closing Codd tables under SPJU
queries is RA-complete.

2. The representation system obtained by closing v-tables under SP queries is
RA-complete.

Proof. In each case we show that given an arbitrary c-table T , one can construct
a table S and a query q such that q̄(S) = T .

1. Trivial corollary of Theorem 1.
2. Let k be the arity of T . Let {t1, . . . , tm} be an enumeration of the tuples

of T , and let {x1, . . . , xn} be an enumeration of the variables which appear
in T . Construct a v-table S with arity k + n+ 1 as follows. For every tuple
ti in T , put exactly one tuple t′i in S, where t′i agrees with ti on the first k
columns, the k+1st column contains the constant i, and the last m columns
contain the variables x1, . . . , xm. Now let q be the SP query defined

q := π1,...,k(σWm
i=1 k+1=‘i’∧ψi

(S))

where ψi is obtained from the condition ϕti of tuple ti by replacing variable
names with their corresponding indexes in S.

18 Todd J. Green and Val Tannen

ut

Theorem 6 (Finite-Completion).

1. The representation system obtained by closing or-set-tables under PJ queries
is finitely complete.

2. The representation system obtained by closing finite v-tables under PJ or
S+P queries is finitely complete.

3. The representation system obtained by closing Rsets under PJ or PU queries
is finitely complete.

4. The representation system obtained by closing R⊕≡ under S+PJ queries is
finitely complete.

Proof. Fix an arbitrary finite incomplete database I = {I1, . . . , In} of arity k.
It suffices to show in each case that one can construct a table T in the given
representation system and a query q in the given language such that q(Mod(T)) =
I.

1. We construct a pair of or-set-tables S and T as follows. (They can be com-
bined together into a single table, but we keep them separate to simplify
the presentation.) For each instance Ii in I, we put all the tuples of Ii in S,
appending an extra column containing value i. Let T be the or-set-table of
arity 1 containing a single tuple whose single value is the or-set 〈1, 2, . . . , n〉.
Now let q be the S+PJ query defined:

q := π1,...,kσk+1=k+2(S × T).

2. Completion for PJ follows from Case 1 and the fact that finite v-tables are
strictly more expressive than or-set tables. For S+P , take the finite v-table
representing the cross product of S and T in the construction from Case 1,
and let q be the obvious S+P query.

3. Completion for PJ follows from Case 1 and the fact (shown in [29]) that
or-set-tables are strictly less expressive than Rsets. Thus we just need show
the construction for PU . We construct an Rsets table T as follows. Let m
be the cardinality of the largest instance in I. Then T will have arity km
and will consist of a single block of tuples. For every instance Ii in I, we
put one tuple in T which has every tuple from Ii arranged in a row. (If the
cardinality of Ii is less than m, we pad the remainder with arbitrary tuples
from Ii.) Now let q be the PU query defined as follows:

q :=
m−1⋃
i=0

πki,...,ki+k−1(T)

4. We construct a pair of R⊕≡-tables S and T as follows. (S can be encoded as
a special tuple in T , but we keep it separate to simplify the presentation.)
Let m = dlg ne. T is constructed as in Case 2. S is a binary table containing,

Models for Incomplete and Probabilistic Information 19

for each i, 1 ≤ i ≤ m, a pair of tuples (0, i) and (1, i) with an exclusive-or
constraint between them. Let sub-query q′ be defined

q′ :=
m∏
i=1

π1(σ2=‘i’(S))

The S+PJ query q is defined as in Case 2, but using this definition of q′.
ut

Theorem 7 (General Finite Completion). Let T be a representation system
such that for all n ≥ 1 there exists a table T in T such that |Mod(T)| ≥ n. Then
the representation system obtained by closing T under RA is finitely-complete.

Proof. Let T be a representation system such that for all n ≥ 1 there is a
table T in T such that |Mod(T)| ≥ n. Let I = {I1, ..., Ik} be an arbitrary
non-empty finite set of instances of arity m. Let T be a table in T such that
Mod(T) = {J1, . . . , J`}, with ` ≥ k. Define RA query q to be

q(V) :=
⋃

1≤i≤k−1

Ii × qi(V) ∪
⋃

k≤i≤`

Ik × qi(V),

where Ii is the query which constructs instance Ii and qi(V) is the boolean
query which returns true iff V is identical to Ii (which can be done in RA).
Then q(Mod(T)) = I. ut

